Moroccan Journal of Chemistry, Vol 10, No 1 (2022)

Adsorption of Iron (II) from Textile Industry Effluent uing Luffa Cylindrica

Kenechi Nwosu-Obieogu, Goziya William Dzarma, Bernard Okolo, Kelechi Noble Akatobi

Abstract


Abstract

This research investigated the efficiency of luffa cylindrica activated carbon as adsorbent material in the removal of iron (II) from the textile industry effluent in a batch adsorption experiment. The adsorption process was studied as a function of contact time, pH of the solution and adsorbent dosage. At room temperature, the batch adsorption experiment showed maximum adsorption of iron (II) at a pH of 6, a contact time of 60 minutes and an adsorbent dosage of 1g/L. The effluent was characterized using the standard method (atomic absorption spectrometry) while the adsorbent was prepared, carbonated and characterized using SEM and FTIR. The SEM findings revealed a highly porous morphology. The FTIR revealed the presence of various functional groups (OH, CH, C=C and C-C). The findings of the batch adsorption experiment were fitted using Langmuir and Freundlich isotherm models and Langmuir model gave a better fit. The kinetic data of iron (II) was evaluated using pseudo-first-order and pseudo-second-order kinetic models. The batch adsorption experimental data conforms more to the pseudo-first-order kinetic model.