Sorption of Light Organic Compounds onto Silica Mesoporous and Modified Zeolites

Hasna BOUHALI, Nabila CHALAL, Hadj HAMAIZI*, and Abdelkader BENGUEDDACH

1Department of Chemistry, College of Sciences, University of Oran, P.O. Box 1524, Oran-Menaouer, 31000, Algeria

*Corresponding author. E-mail: hamaizimizou@yahoo.fr

Received 05 Aug 2015, Revised 10 Oct 2015, Accepted 01 Nov 2015

Abstract

The adsorption of acetone, 1-propanol and carbon dioxide was tested with mesoporous silica materials made from non ionic surfactants with a long hydrophilic chain. The synthesis carried out in strongly acidic medium use tetraethylorthosilicate and zeolites as silica sources. X-ray powder diffraction (XRD), nitrogen adsorption–desorption analysis and scanning electron microscopy (SEM) were applied to characterize the prepared samples. Acetone, 1-propanol and CO₂ adsorption at 298K was evaluated by a volumetric method, and the sorption results indicate a high adsorption capacity of organic compounds, depending essentially on the porous texture of the materials. An adsorption kinetic model was proposed to describe the adsorption of VOCs over template-free mesoporous siliceous materials. A good agreement with experimental data was found.

Keywords: Non ionic surfactant, Mesoporous; Zeolites; Adsorption; VOC’s.

1. Introduction

We present a study of the adsorption kinetics of light organic compounds in a series of samples with different textural parameters. The main objective of this study is to investigate the adsorption properties of silica mesostructures with a view to understand its usefulness as an adsorbent for important light hydrocarbons particularly, C1 (carbon dioxide), C3 (acetone and 1-propanol). Organic solvents are emitted or evaporated into the atmosphere and are the sources of about 40 Vol % of the volatile organic compound entering the atmosphere. A lot of methods to treat these organic solvents have been developed by Caroll and Ruddy [1]. Adsorption of these contaminants onto an adsorbents and subsequent desorption for reuse or destruction has been a primary route for purifying polluted air. Among these methods, adsorption method is considered as most promising technology in view point of organic solvent recovery and energy saving [2]. In adsorption process, adsorption efficiency is governed by characteristics of adsorbate and adsorbent. Therefore, it is very important to choose appropriate adsorbent [3]. To well understand the nature of the adsorption process, the influence of pore size, surface properties, pore structure and morphology of the
adsorbents on VOCs adsorption has been reported by many authors [4-6]. However, most research is focused on investigating the influences of one or two kinds of similar adsorbent on the VOCs adsorption. And few authors have reported the specific impact of pore structure of different kinds of materials in the adsorption/desorption process. Kosuge et al. [7] have investigated the porous properties of various adsorbents and VOCs adsorption/desorption, just focusing on the pore structure and morphology of mesoporous silica. Therefore, the most research is focused to select the adsorbent with a good stability and regeneration performance recently. Many other porous materials such as zeolites are proposed to be used as adsorbents for VOCs removal [8-10]. Discovered in the early 90’s by Kresge et al. [11] and Beck et al. [12], ordered mesoporous materials are usually obtained in the presence of surfactants which act as organic structuring agents and molecular inorganic precursors. The interaction between organic and inorganic counter parts leads to the formation fordered hybrid mesophases. Among the ordered mesoporous siliceous materials, there are those that are obtained from non-ionic surfactants such as di-block copolymers CₙH₂ₙ₊₁⁻(EO)ₓ called MSU-X [13-16] and whose pore size can reach 10 nm and wall thickness of about 3 nm. The wormhole channel motif is a potentially important structural feature for favorable adsorption, in part, because channel branching within the framework can facilitate access to reactive sites on the framework walls. HMS wormhole structures, likeMSU-X can also have relatively small fundamental particle sizes (<200 nm), which result in complementary textural mesoporosity for the more efficient transport of reagents to framework reaction centers as shown by Zhang et al.[17].

In this work, to further study the effect of porous textural (micro-and mesopores) on the adsorption of acetone, 1-propanol and carbon dioxide, a set of spherical and hexagonal ordered mesoporous silica materials have been synthesized with di-block type copolymers CₙH₂ₙ₊₁⁻(EO)ₓ as templating agents using tetraethylorthosilicate and zeolites as silica sources. Adsorption of VOCs is investigated in room temperature and the modified Avrami’s kinetic equation was applied to determine kinetic’s parameters.

2. Materials and methods

2.1. Chemical materials

Microporous materials 3A (Li-A; CAS No. 12736-96-8) and 13X (Na-X; CAS No. 63231-69-6) were supplied by Zeochem AG, Switzerland. Commercial zeolites were calcined in air at 823K for 6 hours to eliminate organic impurities and used as silica source. Polyoxyethylene (20) oleyl ether (C₁₆-EO₂₀) named Brij®98 has been provided by ACROS Organics Inc. Polyoxyethylene (40) nonylphenyl ether, branched (C₁₅EO₄₀) named IGEPAL®CO-890, Polyoxyethylene (150) dinonylphenyl ether, branched (C₂₄EO₁₅₀) named IGEPAL®DM-970, Polyethylene glycol tert-octyl phenyl ether named Triton™ X-100 and tetraethylorthosilicate (Si-(OC₂H₅)₄) TEOS were purchased From Aldrich-Sigma, USA. Detailed nomenclature including chemical formulas of the whole surfactants used is given in Table 1. Deionized water and hydrochloric acid (HCl 1mol.L⁻¹) have been used for each synthesis; the HCl 1mol.L⁻¹ was prepared from 37% fuming hydrochloric acid (Aldrich-Sigma). Volatile compounds such as acetone (M = 58.08g.mol⁻¹, Tₜₜ ~ 56-57° C), 1-propanol (M = 60.10g.mol⁻¹, Tₜₜ ~ 97-98° C) purchased by Sigma-Aldrich, USA and highly pure carbon dioxide (99.99%) produced by Air Liquide, France, are used for adsorption at room temperature on sorbent materials.
Table 1: Physicochemical properties of surfactants ethers type commercialized under the designation IGEPAL® CO-890, IGEPAL® DM-970, Triton™ X-100 and Brij® 98

<table>
<thead>
<tr>
<th>Commercial designation</th>
<th>Nomenclature</th>
<th>Chemical formula</th>
<th>Molar weight / g.mol⁻¹</th>
<th>HLB (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGEPAL® DM-970</td>
<td>Polyoxyethylene (150) di-nonyl phenyl ether</td>
<td>[C₉H₁₉]₂-C₆H₃-(EO)₁₅₀-OH</td>
<td>6946</td>
<td>19</td>
</tr>
<tr>
<td>IGEPAL® CO-890</td>
<td>Polyoxyethylene (40) nonylphenyl ether</td>
<td>C₆H₁₉-C₆H₄-(OC₂H₄)₄₀-OH</td>
<td>1982</td>
<td>17</td>
</tr>
<tr>
<td>Brij® 98</td>
<td>Polyoxyethylene (20) oleyl ether</td>
<td>C₁₈H₃₅-(OC₂H₄)₂₀-OH</td>
<td>~1149</td>
<td>15.3</td>
</tr>
<tr>
<td>Triton™ X-100</td>
<td>Polyoxyethylene(10) cyclohexyl éther</td>
<td>C₁₄H₂₁-(OC₂H₄)₁₀-OH</td>
<td>~625</td>
<td>13.5</td>
</tr>
</tbody>
</table>

(*) hydrophilic-lyophilic balance

2.2. Synthesis of sorbents

Facile protocol of preparation consists in a mixing of an aqueous solution of the surfactant with HCl 1mol.L⁻¹ solution under constant stirring for 1 hour. The TEOS was added to this mixture and left under stirring for 24 hours at room temperature. The mixture was then heated at 373K overnight without stirring. The precipitated solid product was recovered by filtration, washed and dried at 353K. For example, 2g of Brij®98 in 30g of demineralized water was stirred for 10 minutes before adding 120mL of HCl 1mol.L⁻¹ solution. An amount of TEOS (9g) was added to this homogeneous mixture and kept under vigorous stirring for 24 hours. The mixture was then introduced into a sealed tube and heated at 373K for 48 hours. The resulting precipitated solid product was recovered by filtration, washed and dried. Calcinations of obtained fine white powder was carried out in a tube furnace at 823K in air; this temperature was reached with a heating rate of 10°C/min and a first plateau at 373K for 1h. After the second plateau at 823K for 6 hrs, the oven was cooled down at room temperature with a cooling rate of about 5K/min. For modified zeolite, aluminosilicate framework of zeolite type 3A or 13X is attacked with a strongly concentrated acid before adding the surfactant. For a type synthesis, 2g Brij®98 and 60mL H₂O are mixed with moderate magnetic stirring for 10 min. 60mL of HCl 1mol. L⁻¹ was added drop wise to the solution with the same stirring speed for 60 minutes. Two equal parts of this mixture are separately and simultaneously added to 1g of Li-A Zeolite (3A) for one and 1g of Na-X Zeolite (13X) for the other, with vigorous stirring for 20 hours at room temperature. A heating treatment at 393K for 3 days, results in the formation of two distinct phases, which are filtered and dried at 373K. The stepwise calcinations in air up to 823K for 6 hours and gives a fine white powder for both types of zeolites used.

2.3. Analysis of adsorbents.

Small-angle X-ray diffraction (XRD) patterns were recorded on an Ultima-IV high resolution X-ray powder diffraction (XRD) using Cu Kα radiation (λ = 0.15418 nm) in the 2θ range of 0.5–20° with a scanning rate of 0.5°/min. The XPERTPLUS© software enabled the counting of the spectra and the calculation of pore-pore distance by indexing the reflections. The N₂ isotherms were measured by automated apparatus ASAP 2020.
Prior to N₂ adsorption analysis, the samples were degassed at 673K for 4 hours. The BET surface areas were calculated based on the linear part of the BET plot (P/P_0: 0.05–0.35). The total pore volumes were estimated according to nitrogen uptake at a relative pressure (P/P_0) of ca. 0.99. The pore size distribution and pore diameter were derived from the desorption branch of the N₂ isotherms using Barrett-Joyner-Halenda method using the Halsey equation for multilayer adsorption for all samples. Morphology and particle size of the final products were observed by using scanning electron microscopy FE-SEM (JEOL JSM-6340 F) operating at an acceleration voltage of 20–30 kV.

2.4. Adsorption of VOCs
Adsorption of acetone and 1-propanol is done in real environment at room temperature. The volatile organic compound is put in prolonged contact in closed desiccators with calcined samples which were previously heated at 473K for overnight to remove the physically adsorbed water and small organic impurities adsorbed in pores. We proceed to the removal of moisture from the ambient air by placing a desiccant such as copper sulfate dehydrated prior to and during adsorption measurement. We deduce in our calculations, the amount of air adsorbed which remains weak at this temperature for each adsorption measurement of VOCs used. Adsorption isotherms of CO₂ were measured on the same ASAP 2020 (Micromeritics) apparatus at 273K. Sample cell was loaded with ca. 300 mg of the sorbent. Before the sorbent was out gassed in vacuum at 673K for 4 h in order to remove any adsorbed impurities, the adsorption run was carried out using highly pure CO₂ (99.999%) in a pressure range from 5-760 mm Hg. Maximum amount of adsorbed CO₂ (Q_m) was determined by Langmuir equation using molecular cross-sectional area (0.17 nm²) for CO₂. We propose also, a general kinetic model to describe the adsorption of CO₂ on pure siliceous samples at 0°C. The equation of adsorption rate at the pseudo order n [18] that was used can be expressed in its general form (Equation (1)):

$$\frac{\delta q_t}{(q_e-q_t)^n} = k \cdot dt$$

[1]

Where q_e and q_t are the sorption capacity at equilibrium and at time, respectively, and k is the constant rate. This equation stems from the modified Avrami’s kinetic equation which implies several steps [19]. Its linear form is deduced by integrating the equation rate (Equation (2)):

$$(q_e - q_t)^{1-n} = q_e^{1-n} + k(n - 1)t.$$

[2]

The least squares criterion was used to determine the model parameters. To check the adequacy of the model, the coefficient of correlation R^2 between the experimental and calculated data was determined. We have also checked that the value of q_e calculated by the theoretical model fit to the experimental value obtained from the Langmuir model applied to adsorption measurements of VOCs at 298K.

3. Results and discussion
3.1. Samples characterization
XRD patterns recorded on calcined samples exhibited single broad peak in the 20 range of 0.5-3° (Figure 1), indicating a poorly ordered mesostructure lacking long-rang structural order such as observed for mesostructured solids with worm-like pores [20]. The XRD pattern of TEOS/Brij98 sample shows a first peak narrower and a second very broad peak, indicating a more ordered pore network. These two XRD peaks can be indexed in (100) and (200) reflections indicating a poorly ordered 2D hexagonal mesostructure. For the sample denoted 13X/ Brij98, structure is totally modified and becomes amorphous by action of the
acid and surfactant, characterized by the presence of a single intense reflection; it is further assumed that all the aluminum of the zeolite crystal structure was dissolved as it has been cited in many studies [21-23]. If the correlation distance deduced from the main XRD peak can be attributed to the pore-pore distance, the calculation gives a value of 103.8 Å for the modified zeolite, while it is 54.4 Å when the TEOS used as silica source, assuming respectively a cubic and hexagonal dispositions for the two solids (Table 2).

SEM observations (figure 2) show distinct spherical particles with extremely varied size (1 – 7μm) for 13X/Brij98 material. These large spheroids are a result of a highly high polymerization of silicate species around the micelles formed by the organic surfactant and indicate the radical transformation of the zeolite structure with total collapse of the aluminosilicate framework. The TEOS/Brij98 material is rather in the form of hexagonal silica particles which have a uniform size (~1μm) and randomly arranged, it can be seen that their faces are triturated under the effect of the calcination. An entangled smalls particles (< 1μm) with pseudo cubic shape for samples TEOS/CO-890 and TEOS/DM-970 characterizes the external morphology of silica. Worm-like and hexagonal mesoporous textures are usually observed with such surfactants [24].

Figure 1: Low-angle XRD patterns of calcined samples

Figure 2: Scanning electron micrographs (SEM) of: TEOS/Brij98 and 13X/Brij98 (top); TEOS/DM-970 and TEOS/CO-890 (bottom).
Table 2: Textural and structural parameters of materials calcined at 550°C under air for 6 hours. * used with 30g H₂O; 120 ml HCl; 9g TEOS. **# used with 1g of Na-X zeolite.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Surfactant mass * (duration of synthesis at 100°C)</th>
<th>(D_{\text{pore-pore}}) a /Å</th>
<th>(S_{\text{BET}}) b /m².g⁻¹</th>
<th>(V_p) b /cm³.g⁻¹</th>
<th>C</th>
<th>Wall Thickness d / Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEOS/DM-970</td>
<td>2 g DM-970 (48h)</td>
<td>70.6</td>
<td>748</td>
<td>0.56</td>
<td>43.0</td>
<td>27.6</td>
</tr>
<tr>
<td>TEOS/CO-890</td>
<td>2 g CO-890 (48h)</td>
<td>54.8</td>
<td>664</td>
<td>0.65</td>
<td>35.8</td>
<td>19.0</td>
</tr>
<tr>
<td>TEOS/Brij98</td>
<td>2 g Brij98 (48h)</td>
<td>54.4</td>
<td>760</td>
<td>0.56</td>
<td>43.8</td>
<td>10.6</td>
</tr>
<tr>
<td>13X/Brij98</td>
<td>2 g Brij98** (48h)</td>
<td>103.8</td>
<td>431</td>
<td>0.77</td>
<td>71.3</td>
<td>32.5</td>
</tr>
<tr>
<td>TEOS/Triton</td>
<td>2 g Triton-X100 (48h)</td>
<td>79.8</td>
<td>780</td>
<td>1.22</td>
<td>51.9</td>
<td>27.9</td>
</tr>
</tbody>
</table>

Nitrogen adsorption/desorption isotherms are type IV for all samples; the hysteresis loop not marked and closes around \(P/P₀=0.4\) indicates open pores at their extremities and having dimensions of approximately 40-50 Å for samples obtained by DM-970, CO-890 and Triton-X100 respectively (Fig. 3-A); It was noticed that only the TEOS/DM-970 sample has a micro porosity measured at 57m²/g and 0.2cm³/g for surface area and volume respectively.

Figure 3: Nitrogen adsorption/desorption isotherms at 77 K of calcined samples in A: TEOS/DM-970, TEOS/CO-890 and TEOS/Triton-X100; in B: TEOS/Brij98; 13X/Brij98 Insert: pore size distribution (PSD) obtained by BJH method applied on desorption branch.

It would appear that the length of the hydrophilic chain of the surfactant does not necessarily lead to the formation of very large micelles and therefore very large pores considering that the surfactant molecule with a long hydrophilic chain, constituted of many ethylene oxide segments is subject of torsions resulting on size reduction before forming micelles which will have probably almost the same size from the twisted form of the surfactant molecule. Thus, we do not have much difference in pore sizes, except in 13X/Brij98 which is distinguished by larger pores. For materials TEOS/Brij98 and 13X/Brij98, the shape of the isotherm has a
wide horizontal plateau of adsorption from $P/P_0 = 0.4$ for the first sample, while the adsorbed amounts increase still in the second sample (Figure 3-B); the pores being much larger (71 Å), greater pore volume (0.77 cm3/g) and the hysteresis loop of type H1, characteristic of open pores in the modified zeolite. No micropores observed in the texture showing that practically the crystal lattice of the zeolite original disappeared.

3.2. Adsorption

Figure 4 shows the adsorbed quantities of acetone and 1-propanol, indicating rapid adsorption of both volatile which strongly attenuates after 40 min. onto sample TEOS/Brij98, leading to a saturation bearing respectively ca.170mg/g and 130mg/g for acetone and alcohol. Filling uniform and regular pores seems to be easier compared to a worm-like arrangement; thus adsorption is even better onto TEOS/CO-890 material which traps the organic molecule. Figure 5 indicates the carbon dioxide adsorption breakthrough curves of different adsorbents. The equilibrium times are relatively long at the start of the experiment. Adsorption of the CO$_2$ molecule is carried out slowly at ambient temperature to yield, thereafter the breakthrough curves, S-shaped, with a rapid increase of adsorbed CO$_2$ in a minimum of time before saturation which shows very significant amounts for this purely silica mesoporous. Sample 13X/Brij98 showed a long breakthrough time compared with other porous materials, nearly 40 min.

![Figure 4](image1.png) ![Figure 5](image2.png)

Figure 4: Adsorption breakthrough curves of acetone and 1-propanol over TEOS/CO-890 and TEOS/Brij98
Figure 5: Adsorption breakthrough curves of CO$_2$ over TEOS/CO-890;TEOS/DM-970; TEOS/Brij98; 13X/Brij98; TEOS/Triton-X-100; 3A/Brij98; Zeol-13X and Zeol-3A.

The shortest breakthrough time, only 10min, was observed on sample TEOS/DM-970 and we observe that zeolites 13X, 3A and modified 3A material adsorb more CO$_2$ than all others: ca. 680 mg/g after 100 minutes of contact time for modified 3A adsorbent unlike modified 13X which adsorbs very few CO$_2$. It indicates that absorbents with better porous parameters (surface area and pore volume) do not necessarily show a larger breakthrough capacity. In general, the longer of the breakthrough time indicates a better dynamic adsorption capacity [25]. The modified 3A, by addition of nonionic surfactant offers very high adsorptive capacity, due to the presence of micropores generated by the interconnections of large mesopores unlike modified 13X, which has an exclusively mesoporous texture, giving only low amount of adsorbed CO$_2$. The
values of the maximum quantity adsorbed for CO$_2$ in this study are comparable to those reported in the literature [26-29]: Na-X (277mg/g; 162 mg/g); Na-Y (184mg/g); Na-A (211mg/g); 5A (50mg/g); HMS (74mg/g); MCM-41(29mg/g) and active carbon (396mg/g).

Table 3: Values of the kinetics model parameters

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>k (mg.min/g)</th>
<th>R2</th>
<th>Q$_m$ (mg/g)</th>
<th>Q$_{pred}$ (mg/g)</th>
<th>Err%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEOS/CO-890</td>
<td>1.964</td>
<td>5.18 10$^{-5}$</td>
<td>0.997</td>
<td>600</td>
<td>630</td>
<td>5.00</td>
</tr>
<tr>
<td>TEOS/Brij98</td>
<td>2.143</td>
<td>0.08 10$^{-5}$</td>
<td>0.995</td>
<td>450</td>
<td>422</td>
<td>6.22</td>
</tr>
<tr>
<td>13X/Brij98</td>
<td>1.949</td>
<td>0.10 10$^{-5}$</td>
<td>0.997</td>
<td>700</td>
<td>698</td>
<td>0.28</td>
</tr>
<tr>
<td>1-propanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEOS/CO-890</td>
<td>1.985</td>
<td>3.05 10$^{-5}$</td>
<td>0.994</td>
<td>520</td>
<td>548</td>
<td>5.31</td>
</tr>
<tr>
<td>TEOS/Brij98</td>
<td>2.116</td>
<td>1.34 10$^{-5}$</td>
<td>0.982</td>
<td>300</td>
<td>262</td>
<td>12.6</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEOS/CO-890</td>
<td>1.551</td>
<td>2.69 10$^{-4}$</td>
<td>0.996</td>
<td>150</td>
<td>144</td>
<td>0.04</td>
</tr>
<tr>
<td>TEOS/DM-970</td>
<td>1.605</td>
<td>2.70 10$^{-4}$</td>
<td>0.995</td>
<td>310</td>
<td>296</td>
<td>0.05</td>
</tr>
<tr>
<td>TEOS/Brij98</td>
<td>1.648</td>
<td>2.19 10$^{-4}$</td>
<td>0.975</td>
<td>200</td>
<td>202</td>
<td>0.01</td>
</tr>
<tr>
<td>TEOS/Triton</td>
<td>1.855</td>
<td>2.30 10$^{-4}$</td>
<td>0.990</td>
<td>250</td>
<td>246</td>
<td>0.02</td>
</tr>
<tr>
<td>Zeol-13X</td>
<td>1.661</td>
<td>5.62 10$^{-4}$</td>
<td>0.994</td>
<td>260</td>
<td>284</td>
<td>8.41</td>
</tr>
<tr>
<td>Zeol-3Å</td>
<td>1.790</td>
<td>2.68 10$^{-4}$</td>
<td>0.981</td>
<td>460</td>
<td>465</td>
<td>1.07</td>
</tr>
<tr>
<td>13X/Brij98</td>
<td>1.140</td>
<td>11.8 10$^{-4}$</td>
<td>0.988</td>
<td>108</td>
<td>142</td>
<td>31.5</td>
</tr>
<tr>
<td>3Å/Brij98</td>
<td>1.140</td>
<td>7.46 10$^{-4}$</td>
<td>0.980</td>
<td>700</td>
<td>846</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Table 3 shows the values of the kinetic constants and the characteristic parameters, along with the coefficient of determinations R2 and percentage deviations Err%. The values of pseudo order kinetics n are close to 2 for the adsorption of acetone and 1-propanol in all used sorbents; the linear form of the kinetic model, which shows by extrapolation of the experimental values, a point of convergence of lines corresponding to the value fixed to Q$_e$ = 500mg/g and from which the value of the pseudo-order n is
derived by calculation for acetone and 1-propanol (Figure 6); Probably the lateral interactions of these both polar molecules allow a greater diffusion towards the surface and hence a more substantial adsorption. Whereas, in adsorption of carbon dioxide values of pseudo-order range between 1.5 and 1.8, but not for modified zeolites, where they close to 1; the quadrupole moment of CO₂ rather marked facilitates individual approach for each molecule to the solid surface. The linear form of the kinetic equation, applied to the adsorption in zeolites indicates a large gap in the straight traced between the original and modified zeolites respectively (figure7); the percentage error Qₘ is therefore quite high. This suggests probably that the rates of desorption and adsorption of CO₂ molecule are equivalent in large pores open to their extremities, unlike microporous surface, wherein the adsorption rate prevails. Otherwise, theoretical model applies very well to in most kinetics given the values of the criterion R², with a higher constant rate in the modified zeolites and pseudo-order of the kinetics according to the light organic molecules that adsorb well in the materials studied.

![Figure 7](image-url) Carbon dioxide kinetics adsorption onto purely silica at 298K (solid points: experimental; dashed lines: model)

4. Conclusion
Spherical silica particles with radial mesopores were synthesized by using non-ionic surfactants as template, tetraethyl orthosilicate and zeolites as silica precursor. Textural characterization shows a high specific surface and large pores for samples, especially for those obtained with zeolites 13X and 3A, which are characterized by a high mesoporosity. Samples exhibit a better acetone, 1-propanol and CO₂ adsorption at 25 °C. This study presents a kinetic analysis of organic compounds adsorption and the proposed model was in good agreement with experimental data.

Acknowledgments
This work is part of research project CNEPRU (Oran University) of the Ministry of Higher Education which has provided us with financial support; the financial support of the General Directorate of Scientific Research and Technological Development (DGRSDT).
REFERENCES

[18] S. Lagergren, Handligar. 24 (1898) 1