Study of dependence between two types of most abundant natural clays in Bejaad province (Central Morocco) using a statistical approach

A. Ainane(a), M. Taleb(b), F. El-Hajjaji(b), B. Hammouti(c), A. Chetouani(c), T. Ainane(a)

(a)Superior School of Technology (EST-Khenifra), University of Sultan Moulay Slimane, PB 170, Khenifra 54000 Morocco.
(b)Laboratoire d'Ingénierie d'Electrochimie, Modélisation et d'Environnement (LIEME), Faculté des sciences/Université Sidi Mohammed Ben Abdellah, Fes, Morocco.
(c)LC2AME-URAC18, Faculté des Sciences, Université Mohammed Premier, B.P. 717, 60000, Oujda, Morocco.

Abstract

This work proposes the studying of characterization analysis of two natural Moroccan clays (RC and GC) in the same location from Bejaad (Province of Khouribga, Morocco) and to know the relationship dependence between them. The values obtained during the determination of a few parameters (density, pH, conductivity, dry matter - moisture content, organic matter-mineral matter) show that the two materials RC and GC studied have the same physical-chemical properties. The all characterization of the two clays was carried out by XRD, XRF, FTIR, SEM/EDX and TGA. The results obtained show that the two materials have very irregular and microporous structures, a heterogeneity of the pore forms and they are contain a mixture of Kaolinite, Illite, Quartz, Calcite, and Dolomite, with the presence of Hematite only in clay RC. On the other hand, The statistical approach applied to determine the dependence relationship between the two clays was based on two tests: Student's t-test (Comparison of two means for physical-chemical parameters) and Pearson's test (contingency table for XRF analysis) in order to prove that the two materials studied are the same chemical and physical-chemical characteristics.

Keywords: Characterization; natural clay; characterization; statistic; dependence relation.
1. Introduction
Clays occupy a predominant place in all sedimentary rocks, they are made up of a mixture of minerals and crystalline impurities, often hydrated, in lamellar or fibrous form [1-2]. There are a number of varieties of clays such as sandy, limestone or marl clays and bituminous [3]. Moreover, clays content is an important parameter governing the hydrodynamics soil parameters and fundamental to address agricultural management and environmental development, it was found to be a dominant factor in controlling aggregate stability which is used as an indicator of soil structure. Clay minerals affect properties that influence aggregation: surface area, charge density, cation exchange capacity (CEC), dispersivity and expandability, etc. [4-6] Also, clays are used as raw materials in many industrial fields such as ceramics, paper, paint, petroleum industry, clarification of various effluents, catalysis, etc. [7-10] Their applications are tightly dependent on their structure, composition, and physical properties. Knowledge of these properties is important for understanding the technology of several industrial applications. In Morocco, clay deposits and occurrences have been recorded in different lithological successions ranging in age from Cretaceous to Quaternary [11]. In the Central Morocco as well as in the Meseta domains, Tertiary sediments appear to be the main host of lithogenic clays, where Kaolinite and Illite is the dominant clay minerals in this region and restricted environments [12]. This material clays have been detailed in several studies according to its distribution, occurrences, genesis and paleoenvironmental significance. The objective of this study is the identification and the physical-chemical characterization of two natural clays from central Morocco sampled in the “Bejaad” region, Khouribga Province by advanced analysis techniques (XRD, XRF, FTIR, SEM / EDX) and to know the relationship of dependence between them according to in-depth statistical studies (Student's test and Pearson's test) which will make it possible to establish a database with the various properties studied making their later use more rigorous and more rational.

2. Materials and methods
2.1. Origin of clay rocks and Sample preparation
The two samples of clay rocks which were the subject of this study, noted (RC) and (GC), come from the territorial commune of Boukhriss (Bejaad, Central Morocco) and under the coordinates geographic: 32°47’01.7”N 6°13’52.3”W (Figure 1).

![Figure 1. Geological MAP and location of the studied clays.](image-url)

The samples in the form of blocks are crushed and ground, the homogeneous powders obtained are washed with distilled water, the latter is removed by centrifugation at 3000 rpm for 10 min. After drying, the samples are ground and sieved to a smaller particle size of 200 µm.
2.2. Physico-chemical property
Several techniques have been used in this work to determine the physicochemical property of materials (RC) and (GC) namely: density, pH, electrical conductivity, humidity, dry matter, organic matter and mineral matter.

2.3. Physico-chemical characterizations
The X-ray diffraction was performed at a wavelength of 1.549 Å, at 40 kV and 40 mA using a Bruker CCD-Apex equipment with a X ray generator (Cu Ka and Ni filter).
Oxide content analysis was determined by using the X-ray fluorescence spectrometer (XRF, Model X Rays Siemens Type SRX 3000), equipped with a Rh anode X-ray tube.
A Fourier transform infrared (FT-IR) spectrum was recorded using a Bruker Alpha in transmission mode.
The morphology of the investigated PGFs was examined using a scanning electron microscope coupled with the X microanalysis (MEB-EDX, Model FEI Type Quattro S).
Thermogravimetric analyses (TGA) were conducted with a Du Pont thermogravimetric analyzer, with 10 mg samples from room temperature to 900 °C at a heating rate of 10 °C/min under a nitrogen atmosphere.

2.4. Statistical study
Student’s t-test
Among the most commonly used statistical significance tests applied to small data sets (samples of populations) is the series of Student’s tests. One of these tests is used for the comparison of two means, which is commonly applied to many cases [13-15]. This test is used to compare the two-corresponding means of each physical-chemical propriety of clays (RC and GC).
Hypotheses of test:
\[H_0: \bar{x}_A = \bar{x}_B \]
\[H_a: \bar{x}_A \neq \bar{x}_B \]
This test assumes:
(a) A normal (gaussian) distribution for the populations of the random errors;
(b) there is no significant difference between the standard deviations of both population samples.
The two means and the corresponding standard deviations are calculated by using the following equations (X=A or=B):
\[\mu_X = \bar{x}_X = \frac{1}{n} \sum_{i=1}^{n} x_i \]
\[s_X = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_X)^2} \]
Then, the pooled estimate of standard deviation \(\hat{s} \) is calculated:
\[\hat{s} = \sqrt{\frac{v_A s_A^2 + v_B s_B^2}{v_A + v_B}} \]
With, \(v \) degree of freedom of each sample.
Finally, the statistic \(t_{exp} \) (experimental t value) is calculated:
\[t_{exp} = \frac{\bar{x}_A - \bar{x}_B}{s \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} \]
\(t_{exp} \) value is compared with the critical (theoretical) \(t_{th} \) value corresponding to the given degree of freedom \(v \) (in the present case \(v = v_A + v_B - 2 \)) and the confidence level chosen. Tables of critical \(t \) values can be found in any book of statistical analysis, as well as in many quantitative analysis textbooks. If \(t_{exp} > t_{th} \) then \(H_0 \) is rejected else \(H_0 \) is retained.

Pearson’s test
In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the (multivariate) frequency distribution of the variables [16-18]. Pearson's chi-squared test (χ^2) is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests. The Chi-Square test of independence is used to determine if there is a significant relationship between two nominal variables. In this work, we will use the test to know the dependence of two clay materials used according to their chemical compositions determined by FRX. The frequency of each category for one nominal variable (RC and GC clays) is compared across the categories of the second nominal variable (Different determined oxides). The data can be displayed in a contingency table where each row represents a category for one variable and each column represents a category for the other variable.

Hypotheses of test:

H_0: Dependence between the two variables.

H_a: No dependence between the two variables.

First we have to calculate the expected value of the two nominal variables. We can calculate the expected value of the two nominal variables by using this formula:

$$E_{i,j} = \frac{\sum_{k=1}^{c} O_{i,k} \cdot \sum_{k=1}^{r} O_{k,j}}{N}$$

Where:

- $E_{i,j}$: expected value.
- $O_{i,k}$: Sum of the ith column.
- $O_{k,j}$: Sum of the kth row
- N: total number

After calculating the expected value, we will apply the following formula to calculate the value of the Chi-Square test of Independence:

$$\chi^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$$

- χ^2: Chi-Square test of Independence.
- $O_{i,j}$: Observed value of two nominal variables.
- $E_{i,j}$: Expected value of two nominal variables.

Degree of freedom is calculated by using the following formula:

$$DF = (r - 1)(c - 1)$$

Where:

- DF: Degree of freedom.
- r: number of rows.
- c: number of columns.

Hypothesis testing for the chi-square test of independence, where a test statistic is computed and compared to a critical value. The critical value for the chi-square statistic is determined by the level of significance (typically 0.05) and the degrees of freedom. The degrees of freedom for the chi-square are calculated using the previous formula. If the observed chi-square test statistic is greater than the critical value, the null hypothesis can be rejected.

3. Results and discussions

3.1. Physico-chemical property
All the values obtained during the determination of the physico-chemical properties of the two clay rocks are presented in Table 1. The first reading of the results shows that the physico-chemical property of the two materials studied are similar. In general: The density for the two samples are high, the pH values are respectively 7.22 for (RC) and 7.23 for (GC), reveal the neutrality of the porous media studied. The humidity (water content) values are low, which explains the non-hygroscopic nature of the samples as well as the organic matter contents are low which correspond to the mineral composition of the materials. The low values of colloidalinity and the electrical conductivity explain the weak ionization of the particles entering into the constitution of two materials and the porosity of the two media is important and it is worth 0.72. The results obtained give a general point of view on porous clay media before insertion into practical applications of later work.

Table 1. Physical-chemical parameters of RC and GC porous media.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RC</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>1.42</td>
<td>1.44</td>
</tr>
<tr>
<td>pH</td>
<td>7.22</td>
<td>7.23</td>
</tr>
<tr>
<td>Conductivity (mS/m)</td>
<td>302</td>
<td>298</td>
</tr>
<tr>
<td>Dry matter content (%)</td>
<td>98.17</td>
<td>98.14</td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td>1.83</td>
<td>1.86</td>
</tr>
<tr>
<td>Organic content (%)</td>
<td>8.35</td>
<td>6.74</td>
</tr>
<tr>
<td>Mineral content (%)</td>
<td>91.65</td>
<td>93.26</td>
</tr>
<tr>
<td>Swelling index (%)</td>
<td>48.17</td>
<td>48.14</td>
</tr>
<tr>
<td>Colloidality (%)</td>
<td>7.7</td>
<td>7.6</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.72</td>
<td>0.72</td>
</tr>
</tbody>
</table>

3.2. Physico-chemical characterizations

The purpose of the X-ray crystallography study started as part of this work was to determine the mineralogical composition of the two media studied. Figure 2 shows the diffractograms of the (RC) and (GC) samples. According to the XRD diagrams obtained, these two types of materials have identical clay mineralogical compositions: Reflections characteristic of phyllosilicates have been detected at 10 Å, 7 Å, 5.1 Å, 4.5 Å, and 3.5 Å for the two samples, hence, the first 3 peaks correspond to the basal distance d₀₀₁ and d₀₀₂ Kaolinite, while the other two peaks correspond respectively to the reflections d₀₀₁ and d₀₀₂ Illite [19-20]. Quartz is also present in both samples as an associated mineral. It manifests with a high intensity peak towards the reflection 3.2 Å with four low intensity peaks associated with 4.2 Å, 2.3 Å, 2.1 Å and 1.9 Å [21]. The presence of the characteristic carbonate lines in the two samples associated with the 1.8 Å reflection confirms the presence of calcite and at the 2.4 Å and 2.1 Å reflections of the presence of dolomite [22]. The presence of hematite in the RC sample towards the reflections 3.58 Å, 2.55 Å, and 2.37 Å [23]. Spectral analysis by DRX indicates that the two clay rocks (RC) and (GC) contain a mixture of: Quartz (SiO₂), Calcite (CaCO₃), Dolomite (CaMg(CO₃)₂), Kaolinite ((Al₂Si₂O₅(OH)₄) and Illite (K₃[(Al₂Si₃O₁₀)(Si,Al)₄O₁₀ [(OH)]₂(H₂O)], which implies that these environments are heterogeneous. Table 2 shows the content of the chemical elements present in each sample. Silicon oxide SiO₂ and aluminum oxide Al₂O₃ are the major constituents for both (RC) and (GC) clays. The highest amount of SiO₂ was detected for (GC) green clay, around 52.17%, while the percentage in red clay is around 33.40%. These percentages are justified by the presence of free silica. Aluminum oxide Al₂O₃ is present with a percentage of 17.03% for (RC) and 29.06% for (GC). The iron oxide Fe₂O₃ is present in the two samples with a remarkable quantity
for the red clay (RG) with a percentage of 32.47% and a low percentage of 1.61% for the green clay (GC) which explains the red color of the first one. The oxide compositions: Na₂O, K₂O, MgO, CaO and TiO₂ in the two samples reach moderate percentages between 1% and 4%, thus the others remaining: P₂O₅ and SO₃ present low percentages on the order of ppm. Loss on ignition (PAF) corresponds to the departure of water H₂O, carbon dioxide CO₂ from the decomposition of carbonates and organic matter in the sample to be analyzed, the values obtained are 8.35% for red clay (RC) and 6.74% for green clay (GC) and they reflect the sum of the two contents of water and organic matter presented in Table 2.

Fourier transform infrared spectroscopic analysis (IRTF) consists in measuring the quantities of radiation absorbed by the sample as a function of the incident wavelength. The analyzes by IRTF Spectroscopy are represented in the spectra of Fig. 3. The examination reveals adsorption bands which appear as follows: The band which spreads at 1025 cm⁻¹ corresponds to the vibrations of valence of the Si-O bond, and it is characteristic of the aluminosilicate. The bands observed at approximately 920 and 3620 cm⁻¹ are attributed to the valence vibrations of the OH group and the elongation of Al₂OH (interaction between OH and Al), also the vertices at 698 cm⁻¹ are characteristic of the Al-OH and Si-O bonds. The bands observed at 475 and 540 cm⁻¹ are respectively attributed to the deformation vibrations of the Si-O and Si-O- Al bonds. The band observed at 1517 cm⁻¹ is attributed to the C-O bond vibrations of calcium carbonate CaCO₃. The band observed at 1455 cm⁻¹ in the first spectrum of (RC) is attributed to the bending vibrations of the group O-Fe-O which proves the presence of Hematite [24-26]. The scanning electron microscope (SEM) pictures illustrated in Fig. 4 and 5 respectively for (RC) and (GC), revealed the nature of the morphology of the two samples at a resolution of 5 to 200 μm. The results obtained show, on the one hand, very irregular and microporous structures and, on the other hand, a heterogeneity of the pore shapes over the entire surface. In addition, microanalyses by dispersive X-ray analysis (EDX) of the surfaces of the samples (RC) and (GC) give chemical compositions presented as a function of percentages by mass which are described in Table 3. The data obtained confirm the results found by X-ray diffraction (XRD) and X-ray fluorescence (FRX), hence the high percentages of silicon (Si) and aluminum (Al) which are consistencies with nature. aluminosilicate of argillaceous rocks, thus the presence in a relatively important quantity of iron (23.27%) in the sample (RC)
Figure 3. IRTF spectra of two RC and GC samples.

Figure 4. SEM of RC (Resolution of 200 μm to 5 μm).

Figure 5. SEM of GC (Resolution of 200 μm to 5 μm).

Table 3. EDX microanalysis of RC and GC surfaces.

<table>
<thead>
<tr>
<th></th>
<th>RC</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8.41</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>36.34</td>
<td>48.76</td>
</tr>
<tr>
<td>Mg</td>
<td>2.87</td>
<td>-</td>
</tr>
<tr>
<td>Al</td>
<td>10.74</td>
<td>18.70</td>
</tr>
<tr>
<td>Si</td>
<td>15.49</td>
<td>27.26</td>
</tr>
<tr>
<td>K</td>
<td>2.87</td>
<td>5.28</td>
</tr>
<tr>
<td>Fe</td>
<td>23.27</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Thermogravimetric analysis consists in continuously monitoring the variation in the mass of a sample as a function of temperature. The temperature rise is 10 °C/minute. The result of this study is given in FIG. 5. The curves show that the two clay samples have three stages of mass loss: The first stage situated in the lower region of 200 °C, corresponding to the dehydration of the surface and the removal of organic matter from the two samples. The percentage of mass loss is of the order of 0.38%. The second level extends between 430 to 670 °C corresponding to the dehydroxylation of the sheets of clay rock, particularly kaolinite, it is worth around 1.01% for RC and 1.04% for GC. The third stage which ranges between 700 to 800 °C corresponding to the dehydroxylation of the illites. The percentage of mass loss due to this elimination is around 3.21% for RC and 3.24% for GC [27-30].

Figure 6. Thermogravimetric analysis of two RC and GC samples.

3.3. Statistical approach to study of dependence between two clays

As described above, the use of statistical approaches gives a general view on the dependence of the two abundant clay materials of the Bejaad region (Morocco). Tables 4 and 5 give the statistical parameters obtained during the realization of Student's test for the physical-chemical properties and Pearson's test for the composition of the oxides of the two clays RC and GC.

Table 4. Statistical parameters of Student’s test for Physical-chemical proprieties of two clays.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(\bar{x}_{RC})</th>
<th>(\bar{x}_{GC})</th>
<th>(s_{RC})</th>
<th>(s_{GC})</th>
<th>(t_{exp})</th>
<th>(t_{th})</th>
<th>p-value</th>
<th>Hypothesis retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm3)</td>
<td>1.42</td>
<td>1.44</td>
<td>0.01</td>
<td>0.02</td>
<td>-2.12</td>
<td>4.30</td>
<td>0.16</td>
<td>(H_0)</td>
</tr>
<tr>
<td>pH</td>
<td>7.22</td>
<td>7.23</td>
<td>0.01</td>
<td>0.01</td>
<td>-4.24</td>
<td>4.30</td>
<td>0.05</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Conductivity (mS/m)</td>
<td>302</td>
<td>298</td>
<td>5</td>
<td>3</td>
<td>0.68</td>
<td>4.30</td>
<td>0.56</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Dry matter content (%)</td>
<td>98.17</td>
<td>98.14</td>
<td>0.11</td>
<td>0.32</td>
<td>0.09</td>
<td>4.30</td>
<td>0.93</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td>1.83</td>
<td>1.86</td>
<td>0.11</td>
<td>0.32</td>
<td>0.09</td>
<td>4.30</td>
<td>0.40</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Organic content (%)</td>
<td>8.35</td>
<td>6.74</td>
<td>1.22</td>
<td>1.52</td>
<td>-0.83</td>
<td>4.30</td>
<td>0.54</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Mineral content (%)</td>
<td>91.65</td>
<td>93.26</td>
<td>1.22</td>
<td>1.52</td>
<td>-0.83</td>
<td>4.30</td>
<td>0.49</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Swelling index (%)</td>
<td>48.17</td>
<td>48.14</td>
<td>2.21</td>
<td>1.30</td>
<td>0.01</td>
<td>4.30</td>
<td>0.99</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Colloidality (%)</td>
<td>7.7</td>
<td>7.6</td>
<td>0.05</td>
<td>0.11</td>
<td>0.82</td>
<td>4.30</td>
<td>0.49</td>
<td>(H_0)</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.72</td>
<td>0.72</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>4.30</td>
<td>1.00</td>
<td>(H_0)</td>
</tr>
</tbody>
</table>

In the results of the Student's test, all the experimental values of \(t_{exp}\) are lower than the critical values \(t_{th}\) at the significance level \(\alpha=0.05\), which proves to retain the null hypothesis \(H_0\), and to reject the alternative hypothesis \(H_a\), which explains that the two materials have the same physical-chemical properties such as: pH, conductivity, dry matter content/ moisture content, organic/mineral content, swelling index, colloidality, porosity. The calculated statistical
parameters of the 2nd test of Pearson applied to the XRF analysis in the form of a contingency table, gives an experimental value above the critical value at the significance level alpha=0.05, which proves to retain the null hypothesis H_0, and reject the alternative hypothesis H_a, which explains that the two materials have similar chemical compositions. The set of statistical results performed according to two models shows that the two clay materials RC and GC have the same properties and characteristics at a 95% confidence level.

Table 5. Statistical parameters of Pearson’s test for XRF analysis of two clays.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2_{exp}</td>
<td>35.53</td>
</tr>
<tr>
<td>χ^2_{th}</td>
<td>18.31</td>
</tr>
<tr>
<td>DF</td>
<td>10</td>
</tr>
<tr>
<td>p-value</td>
<td>0.00</td>
</tr>
<tr>
<td>alpha</td>
<td>0.05</td>
</tr>
<tr>
<td>Phi of Pearson</td>
<td>0.42</td>
</tr>
<tr>
<td>Contingency coefficient</td>
<td>0.38</td>
</tr>
<tr>
<td>V of Cramer</td>
<td>0.42</td>
</tr>
</tbody>
</table>

4. Conclusion

In this work we determined, by different physicochemical analysis techniques, the physicochemical properties and the textural analysis of the two clays RC and GC. The results obtained show that: The properties of the two samples are remarkable: high densities, neutral media and low moisture and organic matter contents. Textural analyzes show that the composition of the two samples has a clay character, from where they contain a mixture of illite and kaolinite, as well they contain associated minerals such as quartz and calcite, and hematite for the sample (RC). The morphological texture of two samples is porous, while the structures are heterogeneous and the samples (RC) and (GC) are stable under ambient conditions.

References

