Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case
DOI:
https://doi.org/10.34874/IMIST.PRSM/fsejournal-v1i1.26873Keywords:
Parameter estimation, Non-ergodic fractional Ornstein-Uhlenbeck process, Young integral.Abstract
We consider the parameter estimation problem for the non-ergodic fractional Ornstein- Uhlenbeck process defined as dXt = θXtdt + dBt, t≥ 0, with a parameter θ > 0, where B is a fractional Brownian motion of Hurst index H ∈ ( 1/2 , 1). We study the consistency and the asymptotic distributions of the least squares estimator ?? of θ based on the observation {Xs, s ∈ [0, t]} as t → ∞.
References
E. Alòs, D. Nualart. Stochastic integration with respect to the fractional Brownian motion.
Stoch. stoch. reports 75, no. 3, (2003), 129-152.
M. Barczy, G. Pap. Asymptotic behavior of maximum likelihood estimator for time inhomogeneous
diffusion processes. J. Statist. Plan. Infer. 140, no. 6, (2010), 1576-1593.
I.V. Basawa, D.J. Scott. Asymptotic optimal inference for non-ergodic models. Lecture Notes
in Statistics, 17, Springer, New York, (1983).
H.M. Dietz, YU.A. Kutoyants. Parameter estimation for some non-recurrent solutions of
SDE. Statistics and Decisions 21(1), (2003), 29-46.
K. Es-Sebaiy, I. Nourdin. Parameter estimation for -fractional bridges. (2011), Submitted.
http://arxiv.org/abs/1101.5790v1.
Y. Hu, H. Long. Parameter estimation for Ornstein-Uhlenbeck processes driven by -stable
Lévy motions. Commun. Stoch. Anal. 1, (2007), 175-192.
Y. Hu, D. Nualart. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statistics
and Probability Letters 80, (2010), 1030-1038.
Yu. A. Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer, Berlin,
Heidelberg, (2004).
R. S. Liptser, A. N. Shiryaev. Statistics of Random Processes: II Applications. Second Edition,
Applications of Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, (2001).
I. Nourdin. An invitation to fractional Brownian motion. Doctoral course. http://www.iecn.unancy.
fr/nourdin/lectures-fbm.pdf, (2010).
D. Nualart. The Malliavin calculus and related topics. Springer-Verlag, Berlin, second edition,
(2006).
D. Nualart, G. Peccati. Central limit theorems for sequences of multiple stochastic integrals.
Ann. Probab. 33 (1), (2005), 177-193.
V. Pipiras, M.S. Taqqu. Integration questions related to fractional Brownian motion Probab.
Theory Rel. Fields, 118, no. 2, (2000), 251-291.
L. C. Young. An inequality of the Hölder type connected with Stieltjes integration. Acta Math.
, (1936), 251-282.