Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Authors

  • youssef Ouknine Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh
  • Rachid Belfadli Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Taroudant
  • Khalifa Es-Sebaiy Institut de Mathématiques de Bourgogne, Université de Bourgogne, Dijon

DOI:

https://doi.org/10.34874/IMIST.PRSM/fsejournal-v1i1.26873

Keywords:

Parameter estimation, Non-ergodic fractional Ornstein-Uhlenbeck process, Young integral.

Abstract

We consider the parameter estimation problem for the non-ergodic fractional Ornstein- Uhlenbeck process defined as dXt = θXtdt + dBt,  t≥ 0, with a parameter θ  > 0, where B is a fractional Brownian motion of Hurst index H   ( 1/2 , 1).  We study the consistency and the asymptotic distributions of the least squares estimator ??  of θ based on the observation {Xs,  s [0, t]} as t → ∞.

Author Biography

Khalifa Es-Sebaiy, Institut de Mathématiques de Bourgogne, Université de Bourgogne, Dijon


Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

References

E. Alòs, D. Nualart. Stochastic integration with respect to the fractional Brownian motion.

Stoch. stoch. reports 75, no. 3, (2003), 129-152.

M. Barczy, G. Pap. Asymptotic behavior of maximum likelihood estimator for time inhomogeneous

diffusion processes. J. Statist. Plan. Infer. 140, no. 6, (2010), 1576-1593.

I.V. Basawa, D.J. Scott. Asymptotic optimal inference for non-ergodic models. Lecture Notes

in Statistics, 17, Springer, New York, (1983).

H.M. Dietz, YU.A. Kutoyants. Parameter estimation for some non-recurrent solutions of

SDE. Statistics and Decisions 21(1), (2003), 29-46.

K. Es-Sebaiy, I. Nourdin. Parameter estimation for -fractional bridges. (2011), Submitted.

http://arxiv.org/abs/1101.5790v1.

Y. Hu, H. Long. Parameter estimation for Ornstein-Uhlenbeck processes driven by -stable

Lévy motions. Commun. Stoch. Anal. 1, (2007), 175-192.

Y. Hu, D. Nualart. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statistics

and Probability Letters 80, (2010), 1030-1038.

Yu. A. Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer, Berlin,

Heidelberg, (2004).

R. S. Liptser, A. N. Shiryaev. Statistics of Random Processes: II Applications. Second Edition,

Applications of Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, (2001).

I. Nourdin. An invitation to fractional Brownian motion. Doctoral course. http://www.iecn.unancy.

fr/nourdin/lectures-fbm.pdf, (2010).

D. Nualart. The Malliavin calculus and related topics. Springer-Verlag, Berlin, second edition,

(2006).

D. Nualart, G. Peccati. Central limit theorems for sequences of multiple stochastic integrals.

Ann. Probab. 33 (1), (2005), 177-193.

V. Pipiras, M.S. Taqqu. Integration questions related to fractional Brownian motion Probab.

Theory Rel. Fields, 118, no. 2, (2000), 251-291.

L. C. Young. An inequality of the Hölder type connected with Stieltjes integration. Acta Math.

, (1936), 251-282.

Downloads

Published

01-02-2012

Issue

Section

Mathematics, Applied Mathematics, Computer Sciences