F-theory on tetrahedron
DOI:
https://doi.org/10.34874/IMIST.PRSM/fsejournal-v1i1.26792Keywords:
F-theory on Calabi-Yau 4-folds, del Pezzo surfaces, BHV model, Intersecting Branes, Toric singularitesAbstract
Complex tetrahedral surface T is a non planar projective surface that is generated
by four intersecting complex projective planes CP2. In this paper, we study the family {Tm} of blow ups of T and exhibit the link of these Tms with the set of del Pezzo surfaces dPn obtained by blowing up n isolated points in the CP2. The Tms are toric surfaces exhibiting a U (1) × U (1) symmetry that may be used to engineer gauge symmetry enhancements in the Beasley-Heckman-Vafa theory. The blown ups of the tetrahedron have toric graphs with faces, edges and vertices where may localize respectively fields in adjoint representations, chiral matter and Yukawa trifields couplings needed for the engineering of F- theory GUT models building.
References
L.E. Ibanez, F. Marchesano, R. Rabadan, Getting just the Standard Model at Intersecting
Branes, JHEP 0111 (2001) 002, arXiv:hep-th/0105155,
D. Cremades, L.E. Ibanez, F. Marchesano, Intersecting Brane Models of Particle Physics and
the Higgs Mechanism, JHEP 0207 (2002) 022, arXiv:hep-th/0203160,
Bobby S. Acharya, Konstantin Bobkov, Gordon L. Kane, Piyush Kumar, Jing Shao, The G2-
MSSM - An M- Theory motivated model of Particle Physics, Phys.Rev.D78:065038,2008,
arXiv:0801.0478,
Piyush Kumar, Connecting String/M Theory to the Electroweak Scale and to LHC Data,
Fortsch.Phys.55:1123-1280,2008, arXiv:0706.1571,
I. Antoniadis, E. Kiritsis and T. N. Tomaras, A D-brane alternative to unification, Phys.
Lett. B 486 (2000) 186, ArXiv:hep-ph/0004214; D-brane Standard Model, Fortsch. Phys. 49
(2001) 573, ArXiv:hep-th/0111269,
G. Aldazabal, L. E. Ibanez, F. Quevedo and A. M. Uranga, D-branes at singularities: A
bottom-up approach to the string embedding of the standard model, JHEP 0008 (2000) 002,
ArXiv:hep-th/0005067,
Minos Axenides, Emmanuel Floratos, Christos Kokorelis, SU(5) Unified Theories from Intersecting
Branes, JHEP 0310 (2003) 006, arXiv:hep-th/0307255,
C.-M. Chen, G. V. Kraniotis, V. E. Mayes, D. V. Nanopoulos, J. W. Walker, A Supersymmetric
Flipped SU(5) Intersecting Brane World, Phys.Lett. B611 (2005) 156-166, arXiv:hepth/
,
El Hassan Saidi, On Black Attractors in 8D and Heterotic/Type IIA Duality, JHEP
:129,2011, arXiv:1011.5009,
L.B Drissi, F.Z Hassani, H. Jehjouh, E.H Saidi, Extremal Black Attractors in 8D Maximal
Supergravity, Phys.Rev.D81:105030,2010, arXiv:1008.2689,
Chris Beasley, Jonathan J. Heckman, Cumrun Vafa, GUTs and Exceptional Branes in Ftheory
- I, JHEP 0901:058,2009, arXiv:0802.3391,
Chris Beasley, Jonathan J. Heckman, Cumrun Vafa, GUTs and Exceptional Branes in Ftheory
- II: Experimental Predictions, arXiv:0806.0102,
Jonathan J. Heckman, Cumrun Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452
Joseph Marsano, Natalia Saulina, Sakura Schafer-Nameki, Gauge Mediation in F-Theory
GUT Models, arXiv:0808.1571, An Instanton Toolbox for F-Theory Model Building,
arXiv:0808.2450,
Martijn Wijnholt, F-Theory, GUTs and Chiral Matter, arXiv:0809.3878
M. Demazure, surface de del Pezzo, lectures notes in mathematics 777 springer 1980,William
Fulton, algebraic curves, Mathematics lecture Note series, Benjamin/Cummings Publishing
compagny,
M.R. Douglas, S. Katz, C. Vafa, Small Instantons, del Pezzo Surfaces and Type I’ theory,
Nucl.Phys. B497 (1997) 155-172, arXiv:hep-th/9609071,
Duiliu-Emanuel Diaconescu, Bogdan Florea, Antonella Grassi, Geometric Transitions, del
Pezzo Surfaces and Open String Instantons, Adv.Theor.Math.Phys. 6 (2003), 643-702,
arXiv:hep-th/0206163,
R.Abounasr, M.Ait Ben Haddou, A.El Rhalami, E.H.Saidi, Algebraic Geometry Realization
of Quantum Hall Soliton, J.Math.Phys. 46 (2005) 022302, arXiv:hep-th/0406036,
Lalla Btisam Drissi, Leila Medari, El Hassan Saidi, GUT-type Models in F-Theory on Local
Tetrahedron, Lab/UFR-HEP/0902, GNPHE/0903,
P. Griffits and Harris, Principles of algebraic geometry, J.Wiley & Sons, New York 1994, Y.I
Manin, cubic forms; Algebra, geometry, arithmetics. North Holland publishing, Amsterdam