Genetic study of sex inversion in humans


  • Salaheddine REDOUANE 1 Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco. 2 Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca, Morocco.
  • Houda HARMAK 1 Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco. 3 Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock. Hassan II University, Casablanca, Morocco.
  • Loubna DAFRALLAH 1 Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.
  • Sara BENCHIKH 2 Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca, Morocco. 3 Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock. Hassan II University, Casablanca, Morocco.
  • Fatima Ezzahra EL KAHLAOUI 4 Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco.
  • Ouafaa ANIQ FILALI 3 Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock. Hassan II University, Casablanca, Morocco.
  • Abderrahim MALKI 2 Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca, Morocco.
  • Abdelhamid BARAKAT 1 Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.
  • Sanaa NASSEREDDINE 4 Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco.
  • Hassan ROUBA 1 Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.



Karyotype, DSD, Sex inversion, Mutations.


Sex reversal is considered to be a form of disorders of sex development or DSD (disorders/Differences of sex development). This is an inconsistency between gonadal, phenotypic and chromosomal sex. Sexual development, including the development of gonads and organs reproduction and the acquisition of secondary sexual characteristics, is under genetic control. Indeed, following the bibliographic study carried out in this report, we were able to better understand the pathophysiology of sex reversal, enumerate the associated genetic mutations and identify the signaling pathways affected. In addition, a retrospective study was performed to determine the frequency of sex reversal compared to other categories of DSD. This work focused on a sample of 981 patients with clinical signs indicating the presence of DSD. These patients presented to the Cytogenetics laboratory of the Institut Pasteur in Morocco between the years 2011 and 2021. The karyotype was performed on a heparinized tube according to the standard method. Based on the karyotype results, we found 74 cases of sex inversion corresponding to 7.54%. Abnormal karyotypes accounted for 37.31% with a predominance of Turner syndrome (41.53%), 26.23% of Klinefelter syndrome, 12.3% of patients presented with XY female type sex inversion, 7.92% with sex reversal type XX men and 7.65% had mixed gonadal dysgenesis. Finally, to guide the diagnosis, we established a course of action indicating the genes which are the most incriminated in the two types of sex inversion.


• Abd El Salam, M. A., Ibrahim, N. H., & Eskarous, N. N. (2021). A rare case of male sex reversal syndrome (46, XX) with negative SRY gene: a disorder of sexual differentiation (DSD). African Journal of Urology, 27(1), 0–3.

• Acién, P., & Acién, M. (2020). Disorders of sex development: Classification, review, and impact on fertility. In Journal of Clinical Medicine (Vol. 9, Issue 11).

• Alkhzouz, C., Bucerzan, S., Miclaus, M., & Mirea, A. (2021). 46 , XX DSD : Developmental , Clinical and Genetic Aspects.

• Anwar, W. A., Khyatti, M., & Hemminki, K. (2014). Consanguinity and genetic diseases in North Africa and immigrants to Europe. European Journal of Public Health, 24(SUPPL.1), 57–63.

• Ashfaq, S., Siddiqui, A., Shafiq, W., & Azmat, U. (2021). A Rare Presentation of Disorder of Sex Development. Cureus, 13(1), 1–5.

• Askari, M., Rastari, M., Seresht-Ahmadi, M., McElreavey, K., Bashamboo, A., Razzaghy-Azar, M., & Totonchi, M. (2020). A missense mutation in NR5A1 causing female to male sex reversal: A case report. Andrologia, 52(6), 1–5.

• Ata, A., Özen, S., Onay, H., Uzun, S., Gökşen, D., Özkınay, F., Özbaran, N. B., Ulman, İ., & Darcan, Ş. (2021). A large cohort of disorders of sex development and their genetic characteristics: 6 novel mutations in known genes. European Journal of Medical Genetics, 64(3).

• Audí, L., Ahmed, S. F., Krone, N., Cools, M., McElreavey, K., Holterhus, P. M., Greenfield, A., Bashamboo, A., Hiort, O., Wudy, S. A., & McGowan, R. (2018). Genetics in endocrinology: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): Position paper of EU COST Action BM 1303 “DSDnet.” European Journal of Endocrinology, 179(4), R197–R206.

• Baetens, D., Verdin, H., De Baere, E., & Cools, M. (2019). Update on the genetics of differences of sex development (DSD). Best Practice and Research: Clinical Endocrinology and Metabolism, 33(3), 101271.

• Baillet, A., Mandon-Pépin, B., Veitia, R., & Cotinot, C. (2011). Genetics of early ovarian differentiation: Recent data. Biologie Aujourd’hui, 205(4), 201–221.

• Balsera, A. M., Estévez, M. N., Beltrán, E. B., Sánchez-Giralt, P., García, L. G., Moreno, T. H., García De Cáceres, M., Carbonell Pérez, J. M., Gómez, E. G., & Rodríguez-López, R. (2013). Distinct mechanism of formation of the 48, XXYY karyotype. Molecular Cytogenetics, 6(1), 1–5.

• Barick, A., Krouile, K., Fdili, F., Chaara, H., & Melhouf, M. (2020). Aménorrhée primaire révélant un syndrome de Swyer: à propos d’un cas rare. International Journal of Medical Reviews and Case Reports, 4(0), 1.

• Bashamboo, A., & McElreavey, K. (2015). Human sex-determination and disorders of sex-development (DSD). Seminars in Cell and Developmental Biology, 45, 77–83.

• Benchikh, S., Bousfiha, A., Razoki, L., Aboulfaraj, J., Zarouf, L., Elbakay, C., Rifai, L. L., El Hamouchi, A., & Nassereddine, S. (2021). Chromosome Abnormalities Related to Reproductive and Sexual Development Disorders: A 5-Year Retrospective Study. BioMed Research International, 2021.

• Bessiène, L., Lombès, M., & Bouvattier, C. (2018). Differences of Sex Development (DSD): Controversies and Challenges. Annales d’Endocrinologie, 79, S22–S30.

• Biason-Lauber, A., & Chaboissier, M. C. (2015). Ovarian development and disease: The known and the unexpected. Seminars in Cell and Developmental Biology, 45, 59–67.

• Bishop, R. (2010). Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Bioscience Horizons, 3(1), 85–95.

• Brockdorff, N., Bowness, J. S., & Wei, G. (2020). Progress toward understanding chromosome silencing by Xist RNA. Genes and Development, 34(11–12), 733–744.

• Chamberlin, A., Huether, R., Machado, A. Z., Groden, M., Liu, H., Upadhyay, K., Vivian, O., Gomes, N. L., Lerario, A. M., Nishi, M. Y., Costa, E. M. F., Mendonca, B., Domenice, S., Velasco, J., & Ostrer, H. (2018). Mutations in. 00(00), 1–23.

• Chi, L., Itäranta, P., Zhang, S., & Vainio, S. (2006). Sprouty2 is involved in male sex organogenesis by controlling fibroblast growth factor 9-induced mesonephric cell migration to the developing testis. Endocrinology, 147(8), 3777–3788.

• Cui, C., Shu, W., & Li, P. (2016). Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Frontiers in Cell and Developmental Biology, 4(SEP), 1–11.

• De Felici, M. (2016). The Formation and Migration of Primordial Germ Cells in Mouse and Man BT - Molecular Mechanisms of Cell Differentiation in Gonad Development (R. P. Piprek (ed.); pp. 23–46). Springer International Publishing.

• Du, H., & Taylor, H. S. (2016). The role of hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harbor Perspectives in Medicine, 6(1).

• Elkarhat, Z., Belkady, B., Charoute, H., Zarouf, L., Razoki, L., Aboulfaraj, J., Nassereddine, S., Elbakay, C., Nasser, B., Barakat, A., & Rouba, H. (2019). Cytogenetic profile of patients with clinical spectrum of ambiguous genitalia, amenorrhea, and Turner phenotype: A 21-year single-center experience. American Journal of Medical Genetics, Part A, 179(8), 1516–1524.

• Falhammar, H., Claahsen-Van der Grinten, H., Reisch, N., Slowikowska-Hilczer, J., Nordenström, A., Roehle, R., Bouvattier, C., Kreukels, B. P. C., & Köhler, B. (2018). Health status in 1040 adults with disorders of sex development (DSD): A European multicenter study. Endocrine Connections, 7(3), 466–478.

• García-Acero, M., Moreno, O., Suárez, F., & Rojas, A. (2020). Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Current Urology, 13(4), 169–178.

• Globa, E., Zelinska, N., Shcherbak, Y., Bignon-Topalovic, J., Bashamboo, A., & MсElreavey, K. (2022). Disorders of Sex Development in a Large Ukrainian Cohort: Clinical Diversity and Genetic Findings. Frontiers in Endocrinology, 13(March), 1–14.

• Grinspon, R. P., & Rey, R. A. (2016). Disorders of Sex Development with Testicular Differentiation in SRY -Negative 46,XX Individuals: Clinical and Genetic Aspects. Sexual Development, 10(1), 1–11.

• Grinspon, R. P., & Rey, R. A. (2019). Molecular characterization of XX maleness. International Journal of Molecular Sciences, 20(23), 1–22.

• Guo, J.-K., Hammes, A., Chaboissier, M.-C., Vidal, V., Xing, Y., Wong, F., & Schedl, A. (2002). Early gonadal development: exploring Wt1 and Sox9 function. Novartis Foundation Symposium, 244, 23-42,253-257.

• Gupta, A., Bajaj, R., & Jindal, U. N. (2019). A rare case of swyer syndrome in two sisters with successful pregnancy outcome in both. Journal of Human Reproductive Sciences, 12(3), 267–269.

• Gürsoy, S., & Erçal, D. (2017). Turner Syndrome and Its Variants. The Journal of Pediatric Research, 4(4), 171–175.

• Hamed, S. T., & Hanafy, M. A. M. (2021). Swyer syndrome with malignant germ cell tumor: a case report. Egyptian Journal of Radiology and Nuclear Medicine, 52(1).

• Hammami, M. B., & Elkhapery, A. (2020). Sexual and developmental aspects of 49, XXXXY Syndrome: A case report. Andrologia, 52(10), 1–5.

• Inan, C., Sayin, N. C., Dolgun, Z. N., Gurkan, H., Erzincan, S. G., Uzun, I., Sutcu, H., Ates, S., Atli, E., & Varol, F. (2019). Prenatal diagnosis of chromosomal polymorphisms: most commonly observed polymorphism on Chromosome 9 have associations with low PAPP-A values *. Journal of Maternal-Fetal and Neonatal Medicine, 32(10), 1688–1695.

• Inoue, T., Sato, K., Ohashi, H., Motojima, T., & Takizawa, T. (2019). Interstitial 6q25 microdeletion syndrome: 46,XX,del(6)(q25.2q26). Pediatrics International, 61(6), 618–620.

• Jiménez, R., Burgos, M., & Barrionuevo, F. J. (2021). Sex maintenance in mammals. Genes, 12(7), 1–14.

• Lamothe, S., Bernard, V., & Christin-Maitre, S. (2020). Gonad differentiation toward ovary. Annales d’Endocrinologie, 81(2–3), 83–88.

• Lee, P. A., Houk, C. P., Ahmed, F., Hughes, I. A., Achermann, J., Baskin, L., Berenbaum, S., Bertelloni, S., Brock, J., Carmichael, P., Chase, C., Cohen-Kettenis, P., Conte, F., Copeland, K., Donohoue, P., Driver, C., Drop, S., Eugster, E., Fujieda, K., … Zucker, K. (2006). Consensus statement on management of intersex disorders. Pediatrics, 118(2).

• Lee, S. R., Lee, T. H., Song, S. H., Kim, D. S., Choi, K. H., Lee, J. H., & Kim, D. K. (2021). Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology. Clinical and Experimental Reproductive Medicine, 48(4), 283–294.

• León, N. Y., Reyes, A. P., & Harley, V. R. (2019). A clinical algorithm to diagnose differences of sex development. The Lancet Diabetes and Endocrinology, 7(7), 560–574.

• Liu, Y. X., Zhang, Y., Li, Y. Y., Liu, X. M., Wang, X. X., Zhang, C. L., Hao, C. F., & Deng, S. L. (2019). Regulation of follicular development and differentiation by intra-ovarian factors and endocrine hormones. Frontiers in Bioscience - Landmark, 24(5), 983–993.

• Loke, J., Pearlman, A., Radi, O., Zuffardi, O., Giussani, U., Pallotta, R., Camerino, G., & Ostrer, H. (2014). Mutations in MAP3K1 tilt the balance from SOX9/FGF9 to WNT/β-catenin signaling. Human Molecular Genetics, 23(4), 1073–1083.

• Malla, T. M., Zargar, M. H., Khan, N., Ahmed, R., Ahmad, F. D., & Shah, Z. A. (2018). Cytogenetic Observations in Infertile Men with Varying Clinical Findings : A Case-Only Study from Kashmir , North. Annals of Genetics and Genetic Disorders, 1(1), 1–5.

• Matson, C. K., Murphy, M. W., Sarver, A. L., Griswold, M. D., Bardwell, V. J., & Zarkower, D. (2011). DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature, 476(7358), 101–105.

• Mazen, I. M., Mekkawy, M. K., Kamel, A. K., Thomas, M. M., & El Ruby, M. O. (2014). XX testicular disorder of sex development with Down syndrome. Middle East Journal of Medical Genetics, 3(2), 70–75.

• McElreavey, K., & Bashamboo, A. (2021). Monogenic Forms of DSD: An Update. Hormone Research in Paediatrics, 1–25.

• Meyer, K. F., Freitas Filho, L. G., Silva, K. I., Trauzcinsky, P. A., Reuter, C., & Souza, M. B. M. (2019). The XY female and SWYER syndrome. Urology Case Reports, 26(June), 100939.

• Moshiri, M., Chapman, T., Fechner, P. Y., Dubinsky, T. J., Shnorhavorian, M., Osman, S., Bhargava, P., & Katz, D. S. (2012). Evaluation and management of disorders of sex development: Multidisciplinary approach to a complex diagnosis. Radiographics, 32(6), 1599–1618.

• Mullen, R. D., & Behringer, R. R. (2014). Molecular genetics of Müllerian duct formation, regression and differentiation. Sexual Development, 8(5), 281–296.

• Nakajima, T., Iguchi, T., & Sato, T. (2016). Retinoic acid signaling determines the fate of uterine stroma in the mouse Müllerian duct. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14354–14359.

• Nakamura, Y., Suehiro, Y., Sugino, N., Sasaki, K., & Kato, H. (2001). A case of 46,X,der(X)(pter→q21::p21→pter) with gonadal dysgenesis, tall stature, and endometriosis. Fertility and Sterility, 75(6), 1224–1225.

• Narang, K., Cope, Z. S., & Teixeira, J. M. (2018). Developmental genetics of the female reproductive tract. In Human Reproductive and Prenatal Genetics. Elsevier Inc.

• Oniya, O., Neves, K., Ahmed, B., & Konje, J. C. (2019). A review of the reproductive consequences of consanguinity. European Journal of Obstetrics and Gynecology and Reproductive Biology, 232, 87–96.

• Pannetier, M., & Pailhoux, É. (2011). La différenciation du sexe: Acquis et perspectives. Medecine/Sciences, 27(10), 859–865.

• Paris, F., Flatters, D., Caburet, S., Legois, B., Lefebvre, H., Sultan1, C., & Veitia, R. A. (2016). A novel variant of DHH in a familial case of 46,XY Disorder of Sex Development: insights from Molecular Dynamics simulations. International Journal of Laboratory Hematology, 38(1), 42–49.

• Peeters, S. B., Korecki, A. J., Baldry, S. E. L., Yang, C., Tosefsky, K., Balaton, B. P., Simpson, E. M., & Brown, C. J. (2019). How do genes that escape from X-chromosome inactivation contribute to Turner syndrome? American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 181(1), 28–35.

• Qin, S., Wang, X., & Wang, J. (2022). Identification of an SRY-negative 46,XX infertility male with a heterozygous deletion downstream of SOX3 gene. Molecular Cytogenetics, 15(1), 1–11.

• Ravel, C., Chantot-Bastaraud, S., & Siffroi, J. P. (2004). Molecular mechanisms in sex determination: From gene regulation to pathology. Gynecologie Obstetrique et Fertilite, 32(7–8), 584–594.

• Rey, R. A., & Grinspon, R. P. (2011). Normal male sexual differentiation and aetiology of disorders of sex development. Best Practice and Research: Clinical Endocrinology and Metabolism, 25(2), 221–238.

• Rey, R., Josso, N., & Racine, C. (2000). Sexual Differentiation. (K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dhatariya, K. Dungan, J. M. Hershman, J. Hofland, S. Kalra, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, C. S. Kovacs, W. Kuohung, B. Laferrère, M. Levy, E. A. McGee, … D. P. Wilson (eds.)).

• Röhle, R., Gehrmann, K., Szarras-Czapnik, M., Claahsen-van der Grinten, H., Pienkowski, C., Bouvattier, C., Cohen-Kettenis, P., Nordenström, A., Thyen, U., Köhler, B., Bennecke, E., Braicu, E. I., Gehrmann, N., Do, T. H., Frömel, F., Wiese, M., Gehrmann, K., Krannich, A., Röhle, R., … Maione, L. (2017). Participation of adults with disorders/differences of sex development (DSD) in the clinical study dsd-LIFE: Design, methodology, recruitment, data quality and study population. BMC Endocrine Disorders, 17(1), 1–26.

• Saputro. (2021). Psychological Problem in Pediatric Disorder of Sex Development Patient and Relatives. Scholar.Archive.Org, 1(3), 49–52.

• Sinclair, A. H. (2018). Sex Determination, Human. In Reference Module in Biomedical Sciences. Elsevier.

• Sirokha, D., Gorodna, O., Vitrenko, Y., Zelinska, N., Ploski, R., Nef, S., Jaruzelska, J., Kusz-Zamelczyk, K., & Livshits, L. (2021). A novel WT1 mutation identified in a 46,XX testicular/ ovotesticular DSD patient results in the retention of intron 9. Biology, 10(12), 1–13.

• Stewart, M. K., Bernard, P., Ang, C. S., Mattiske, D. M., & Pask, A. J. (2021). Oestrogen activates the MAP3K1 cascade and β-catenin to promote granulosa-like cell fate in a human testis-derived cell line. International Journal of Molecular Sciences, 22(18), 1–18.

• Stewart, M. K., Mattiske, D. M., & Pask, A. J. (2020). Estrogen suppresses SOX9 and activates markers of female development in a human testis-derived cell line. BMC Molecular and Cell Biology, 21(1), 1–10.

• Sun, M., Veschi, V., Bagchi, S., Xu, M., Mendoza, A., Liu, Z., & Thiele, C. J. (2019). Targeting the chromosomal passenger complex subunit INCENP induces polyploidization, apoptosis, and senescence in neuroblastoma. Cancer Research, 79(19), 4937–4950.

• Tang, R., Liu, X., Pan, L., & Chen, R. (2019). Novel mutation in FTHL17 gene in pedigree with 46,XY pure gonadal dysgenesis. Fertility and Sterility, 111(6), 1226-1235.e1.

• Terribile, M., Stizzo, M., Manfredi, C., Quattrone, C., Bottone, F., Giordano, D. R., Bellastella, G., Arcaniolo, D., & De Sio, M. (2019). 46,XX testicular disorder of sex development (DSD): A case report and systematic review. Medicina (Lithuania), 55(7), 1–13.

• Tevosian, S. G. (2013). Genetic control of ovarian development. Sexual Development, 7(1–3), 33–45.

• Ürel Demir, G., Doğan, Ö. A., Şimşek Kiper, P. Ö., Utine, G. E., Boduroğlu, K., Gucer, S., & Alikaşifoğlu, M. (2017). Coexistence of Trisomy 13 and SRY (−) XX Ovotesticular Disorder of Sex Development. Fetal and Pediatric Pathology, 36(6), 445–451.

• Viuff, M., Skakkebæk, A., Nielsen, M. M., Chang, S., & Gravholt, C. H. (2019). Epigenetics and genomics in Turner syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 181(1), 68–75.

• Wagner-Mahler, K., Kurzenne, J. Y., Gastaud, F., Hoflack, M., Panaia Ferrari, P., Berard, E., Giuliano, F., Karmous-Benailly, H., Moceri, P., Jouannelle, C., Bourcier, M., Robart, E., & Morel, Y. (2019). Is interstitial 8p23 microdeletion responsible of 46,XY gonadal dysgenesis? One case report from birth to puberty. Molecular Genetics and Genomic Medicine, 7(3), 1–9.

• Weisshaupt, K., Henrich, W., Neymeyer, J., & Weichert, A. (2021). Mode of delivery of women with Swyer syndrome in a German case series. Journal of Perinatal Medicine, 49(6), 725–732.

• Xue, M., Wang, X., Li, C., Zhao, M., He, F., & Li, X. (2019). Novel pathogenic mutations in disorders of sex development associated genes cause 46,XY complete gonadal dysgenesis. Gene, 718(July).

• Yiğman, M., Tangal, S., Haliloğlu, A. H., & Çağlar, G. S. (2021). Erectile function in SRY positive 46,XX males with normal phenotype. Central European Journal of Urology, 74(1), 95–98.