Deiodinase 1 serum levels in the second trimester of pregnancy

Authors

  • Alejandro Rodrigo Vilchis Quijada Faculty of Medicine, Autonomous University of the State of Mexico
  • Pamela Lagos Robles Faculty of Medicine, Autonomous University of the State of Mexico
  • Daniela Escudero Morales Institución Universitaria Colegio Mayor de Antioquia
  • Cristian Fabián Layton Tovar Coordinación de Hospitales de Alta Especialidad
  • Hugo Mendieta Zerón http://orcid.org/0000-0003-3492-8950

DOI:

https://doi.org/10.80481/revuetest34346

Keywords:

Deiodinase 1, pregnancy, TSH

Abstract

Thyroid disease is one of the most frequent causes of gestational endocrinopathies. Deiodinases play an important role controlling the concentration of thyroid hormones at the tissue level and the homeostasis of thyroid hormones, on pregnant women; specifically, Deiodinase type 1 (D1) may control the TSH levels.

To determine the serum levels of D1 in Mexican pregnant women who are in the second trimester of pregnancy.

A prospective, descriptive, and cross-sectional study was carried out with a sample of 52 patients in their second trimester of pregnancy who attended the outpatient clinic of the "Mónica Pretelini Sáenz'' Maternal Perinatal Hospital (HMPMPS), in Toluca, Mexico. A peripheral blood sample was taken to quantify the values of D1 and TSH. The Spearman rank correlation coefficient test using SPSS statistics version 21 software was tested between these two variables.

D1 mean value was of 491.3 pg / mL (± 340.48), TSH mean value was 5.25 mIU / mL (± 3.34), and rs = 0.023 (p = 0.869) was found. Based on the study result, the use of D1 quantification to observe changes in maternal TSH has a non-significant weak positive correlation, restricting its usefulness for timely diagnosis of thyroid abnormalities during pregnancy.

The use of D1 quantification during the second trimester of pregnancy did not show significance to determine thyroid alterations in relation to TSH values in the Mexican population.

References

Ayala-Yáñez R, Velasco-Sordo R, Alfaro-Alfaro J. (2016). Repercusiones del hipotiroidismo al principio del embarazo: consideraciones para mejorar el diagnóstico y la intervención. Ginecol Obstet Mex. 84(10). pp. 652-667.

Bianco AC, da Conceição RR. (2018). The Deiodinase Trio and Thyroid Hormone Signaling. Methods in molecular biology. 1801. pp. 67–83.

CENETEC. (2016). Diagnóstico y tratamiento de hipotiroidismo primario y subclínico en el adulto. México.

Secretaría de Salud. http://www.cenetec.salud.gob.mx/interior/catalogoMaestroGPC.html

Donnay Candil S, Oleaga Alday A, Álvarez-García E. (2019). Valores de referencia de TSH en población gestante española. ¿Podemos unificar criterios? Endocrinol Diabetes Nutr. 66(2). pp. 124–131.

Falla-Zúñiga LF, Sinner D, Moreno-Martínez D, Castellanos-Garzón JA, Salazar-Monsalve L, Pustovrh MC. (2021). Mus musculus: biomodelo de expresión de Desyodinasa (DIO3) y Transtiretina (TTR) en el desarrollo placentario. Entramado. 17(1). pp. 218–230.

Fernández Vaglio R, Pérez Céspedes N. (2020). Actualización sobre patología tiroidea durante el embarazo: hipotiroidismo e hipertiroidismo. Rev Médica Sinerg. 5(10). pp. 1–14.

França MM, German A, Fernandes GW, Liao XH, Bianco AC, Refetoff S, et al. (2021). Human Type 1 Iodothyronine Deiodinase (DIO1) Mutations Cause Abnormal Thyroid Hormone Metabolism. Thyroid. 31(2). pp. 202–207.

Gargallo Fernández M. (2013). Hipertiroidismo y embarazo. Endocrinol Nutr. 60(9). pp. 535–543.

Gutiérrez-Vega S, Armella A, Mennickent D, Loyola M, Covarrubias A, Ortega-Contreras B, et al. (2020). High levels of maternal total tri-iodothyronine, and low levels of fetal free L-thyroxine and total tri-iodothyronine, are associated with altered deiodinase expression and activity in placenta with gestational diabetes mellitus. PloS one. 15(11). pp. e0242743.

Joosen AM, van der Linden IJ, de Jong-Aarts N, Hermus MA, Ermens AA, de Groot MJ. (2016). TSH and fT4 during pregnancy: an observational study and a review of the literature. Clinical chemistry and laboratory medicine, 54(7). pp. 1239–1246.

Korevaar T, Medici M, Visser TJ, Peeters RP. (2017). Thyroid disease in pregnancy: new insights in diagnosis and clinical management. Nature reviews. Endocrinology, 13(10). pp. 610–622.

Koulouri O, Moran C, Halsall D, Chatterjee K, Gurnell M. (2013). Pitfalls in the measurement and interpretation of thyroid function tests. Best practice & research. Clinical endocrinology & metabolism. 27(6). pp. 745–762.

Llop S, Murcia M, Álvarez-Pedrerol M, Grimalt JO, Santa-Marina L, Julvez J, et al. (2017). Association between exposure to organochlorine compounds and maternal thyroid status: Role of the iodothyronine deiodinase 1 gene. Environment international. 104. pp. 83–90.

Lucas Javato M, Domínguez Pascual I, Álvarez Ríos AI, Conde Sánchez M, Guerrero Montavez JM. (2018). Gestante eutiroidea con anticuerpos estimulantes del receptor de tirotropina positivos: manifestación tardía de hipertiroidismo neonatal. A propósito de un caso. Rev Lab Clínico. 11(1). pp. 47–50.

Luongo C, Dentice M, Salvatore D. (2019). Deiodinases and their intricate role in thyroid hormone homeostasis. Nat Rev Endocrinol. 15(8). pp. 479–488.

Morris JC, Galton VA. (2019). The isolation of thyroxine (T4), the discovery of 3,5,3'-triiodothyronine (T3), and the identification of the deiodinases that generate T3 from T4: An historical review. Endocrine, 66(1). pp. 3–9.

Ruiz Ochoa D. (2016). Estudio de la función tiroidea y del estado de yodación de las mujeres embarazadas del área occidental de Cantabria. Tesis Doctoral. En la Universidad de Cantabria (España).

Steegborn C, Schweizer U. (2020). Structure and Mechanism of Iodothyronine Deiodinases - What We Know, What We Don't Know, and What Would Be Nice to Know. Experimental and clinical endocrinology & diabetes. 128(6-07). pp. 375–378.

Downloads

Published

09-11-2022

Issue

Section

Articles