REVIEW: Synthesis of nanoparticles and nanocomposite of WO$_3$

C.E. ARVISDEA1, K.H. GUSTIAWAN1*, L. RAMADHANTY1, N.N. AININ1, S.W. SARI1, T. RAHMANIA1, A.B.D. NANDIYANTO1

1Department of Chemistry, Indonesia University of Education, Bandung, Indonesia

*Corresponding Author; Email: kamelianihg@upi.edu

Received 21 November 2020, Revised 31 January 2021, Accepted 28 February 2021

Abstract. Tungsten oxide (WO$_3$) is a semiconductor that can be used in a wide variety of applications such as semiconductor gas devices, electronic devices, and photocatalysts. WO$_3$ can be proposed as a substitute for TiO$_2$ because it has a narrow bandgap property, which makes this material active in the UV-Vis spectrum. The purpose of writing this paper is to conduct a literature review on the synthesis of WO$_3$ nanoparticles and nanocomposites using a review method on 50 literature from 2000 to 2020 by reviewing several methods such as hydrothermal methods, sol-gel, low-temperature hydrolysis and, water-in-oil microemulsion in sucrose esters, calcination, flame-assisted spray pyrolysis, ultrasonic, and microwave irradiation. Besides, it is also reviewed based on several starting materials such as sodium tungsten dihydrate, AMT (ammonium metatungsten), ammonium tungstate hydrate, H$_2$WO$_4$, phosphotungsten acid, Cl$_6$W, and W powder.

Keywords: WO$_3$, Tungsten oxide, Synthesis, Hydrothermal method

I. Introduction

Most of the research in the photocatalytic field has always focused on titanium dioxide (TiO$_2$). They are cheap, most readily available, thermally and chemically stable, and harmless. However, conventional TiO$_2$ is only active under UV irradiation [1]. Heterogeneous photocatalysis is the process of forming electron-hole pairs in semiconductor materials by utilizing light energy [2]. As an alternative to the photocatalyst, WO$_3$ is proposed as a substitute for TiO$_2$, this is because WO$_3$ can be obtained in various morphological forms such as nanowires, nanosphere, nanoplates and, sub-micron porous balls [3].

WO$_3$ is a material that is active in the visible light spectrum because of its narrow bandgap. WO$_3$ is a stable semiconductor material with a narrow bandgap (2.7–3.1 eV) [4]. WO$_3$ has been found to be very useful in applications of semiconductor gas devices, gas sensors, solar energy devices, electronic devices, photocatalysts, optical storage devices, and emission devices [5,6]. Due to its exotic physico-chemical properties, it shows potential for technological applications in many fields [4] such as in lithium ion batteries [7,8], photocatalysts, and solar energy devices [9]. Tungsten oxide is a material with great potential for use in many practical applications such as electrochromic Smart Glass, switchable devices (screens or mirrors) and, gas sensors (NO$_x$) [10–13]. WO$_3$, ZnO and, SnO are widely used in the field of sensor gas applications, in particular, tungsten can detect toxic and dangerous gases such as NO$_2$, NH$_3$, acetone [9] carbon monoxide, H$_2$S, and hydrocarbons such as benzene and methane [14,15]. However, WO$_3$ is rare, so it is necessary to make it yourself because it will be affected by price increases and export restrictions imposed by producing countries [1].
Several variations of nano tungsten have been produced, such as nanoparticles, nanorods, nanowires, nanosheets and nanoflowers for the industrial scale, resulting from several methods [9,16] such as sol-gel, electro-deposition, anodization, spray pyrolysis and hydrothermal methods [17–19]. The synthesized particles were characterized using thermogravimetric analysis, X-ray diffraction, nitrogen adsorption, scanning electron microscopy, and transmission electron microscopy (TEM) [20].

Several publications have explained the synthesis of WO₃ as has been done by Parashar et al. [21]. However, even so, the literature that discusses this matter is still limited. Therefore, this study was made to conduct a literature review on the synthesis of WO₃ nanoparticles and nanocomposites using the review method in 50 literature from 2000 to 2020 by reviewing several starting materials such as sodium tungsten dihydrate, AMT (ammonium metatungsten), phosphotungsten acid, H₂WO₄, Cl₆W, and W powder.

2. The proposed approach

2.1 Hydrothermal Method

Many attempts have been made to synthesize one-dimensional nanostructured materials. Based on several methods commonly used for the synthesis of nanomaterials with 1D structures, the hydrothermal method appears to be the right step for the fabrication of anisotropic nanomaterials [22]. The hydrothermal method is of particular interest because of its simplicity, efficiency, high yield and scalability [17,23–25]. WO₃ nanostructures with different crystalline phases and morphology have been synthesized using this technique depending on hydrothermal parameters such as reaction temperature, reaction duration and additives used. This method does not require annealing and high-temperature calcination [26]. Recent studies have proven the fact that WO₃ 1D nanostructures such as nanowires, nanobelts, nanorods, nanotubes, nanoribbons and nanofibers produce the best morphology, for these devices their dimensionality limits transport phenomena, large surface to volume ratio, small dimensional ratio to Debye length, and Unique physicochemical properties [27,28] as shown in Figure 1.

![Figure 1. Morphology of WO3 characterized by FESEM. Image adapted from [26]](image)

Na₂WO₄ is used as a starting material in the synthesis of WO₃ nanostructured materials. Na₂WO₄ was dissolved in deionized liquid and then added with a drop of HCl solution drop by drop above the solution while stirring until tungstenic acid formed a precipitate [22]. Impurity is removed by rinsing with deionized liquid and ethanol three times. The washed precipitate was transferred to an oven at 50 °C for 16 hours to obtain a yellow powder (WS). The product was then calcined at 450 °C for 1 hour in the air. The solution was then transferred to an autoclave and maintained at 90 °C for 48 hours. After the reaction is complete, the precipitate is washed with distilled water and ethanol three times, then collected by centrifugation and finally dried at 60 °C for 24 hours [26].

In an experiment conducted by Song et al. [22] before being put into the autoclave, K₂SO₄ was added with various ratios of the precipitate, this was intended to determine the effect of adding organic salts
on the crystallinity and morphology of WO$_3$ nanostructures. The study results showed that there were differences in the morphology of WO$_3$ at various amounts of K$_2$SO$_4$ used. The samples that did not use K$_2$SO$_4$ showed a lamellar structure, while the results of the synthesis with the addition of 15 g of K$_2$SO$_4$ showed a mixture of nanorods and nanoparticles, so it can be said that no WO$_3$ nanowires were formed without the addition of K$_2$SO$_4$.

The experiment conducted by Kolhe et al. [29] also used the hydrothermal method but with a few modifications. The main material used is a solution of H$_2$WO$_4$ which will then be stirred together with oxalic acid, acetonitrile, urea and HCl solution for 30 minutes. The seed-coated WO$_3$ FTO substrate was placed into an autoclave filled with a precursor solution that had been prepared and kept at 180 °C for 6 hours in the oven. After the reaction is complete, the furnace is allowed to naturally cool to room temperature. The FTO substrate was removed from the autoclave, rinsed with ethanol and deionized liquid several times, followed by annealing in air at 500 °C for 2 hours. The study resulted in surface morphology of WO$_3$ thin films with a monoclinic phase and clear peaks at 807 and 715 cm$^{-1}$. The thickness of these nanoflakes is in the 50-100 nm range. Nanoflakes of WO$_3$ are randomly oriented and interconnected, due to the rough surface and porous morphology formed. The nanoflakes have a single crystalline structure with finished lattice edges. The grid spacing was found to be 0.36 nm and readily indexed to the d field distance (002). His research also carried out selectivity against toxic and flammable gases such as SO$_2$, NH$_3$, H$_2$S, and H$_2$. The WO$_3$ thin film shows good selectivity to NH$_3$ by providing a maximum response at temperatures of 150 °C.

Figure 2. WO$_3$ nanostructures in SEM with differences with different magnifications: (a) 5000 ×, b) 14,000 × and c) 15,000 × (d) EDS spectrum. Image adapted from [30]

In addition, the experiments conducted by Huirache-Acuña et al. [30] also used a modified hydrothermal method so that it has the name Two-Step Aged Hydrothermal with the first step ammonium metatungstate [(NH$_4$)$_{10}$W$_{12}$O$_{41}$H$_2$O] solution as a source of WO$_3$ made saturated and acidified with 2.20 N HNO$_3$ (Normal) to produce a pH of about 5 and then kept in a tightly closed flask under stirring for one week at 60 °C. Then, 5 mL of the old solution was stored in an autoclave and heated at 200 °C for 48 hours. The material obtained is filtered and washed with deionized water and dried in the presence of air at room temperature. The composition of the product can be determined by characterization using XRD. The results showed that the XRD pattern results for the WO$_3$ nanostructures, all reflections were indexed based on hexagonal WO$_3$ cells; the ratio of the composition of oxygen atom WO$_3$ to tungsten 3: 1 when viewed from the EDS spectrum; irregular and aggregate particles 30-200 nm long and 20-70 nm wide; the Raman band scattering spectroscopy in response to the vibrations of the WO$_3$ molecules; band position for O$_{1s}$ 530 and 30 eV and W$_{4f}$ 40 and 60 eV, the peak binding energy lies at 35.4 as shown in figure 2. According to the literature, it is WO$_3$, this means...
that the surface of the material contains W^{6+} and not another oxidation number for detected metal. And the growth direction of tungsten oxide nanostructures along the axis with an inter-planar distance of 0.38 nm was detected by HRTEM.

A study with the hydrothermal method was also conducted by Ahmadi et al. [31] on ambient pressure. In this method, three processes are carried out, namely the protonation of the tungstate ion, the crystallization of the tungstite, and the phase transformation into WO_3. The first step is the protonation of the tungstate ion on acidification of the solution to form a white solid precipitate:

The second step is hydration of the tetrahedral molecule $[WO_2(OH)_2]$ and dimerization via an O bridge to form crystals of $[WO(OH)_4(H_2O)]_2(I-O)$ containing octahedral W-centers by hydrothermal processes in acidic solutions:

$$2[WO_2(OH)_2] + 3H_2O \rightarrow [WO(OH)_3(H_2O)]_2(\mu-O)$$

The third step relates to the dehydration process (i.e., phase transformation):

$$[WO_3, H_2O]_n \rightarrow [WO_3]_n + nH_2O$$

The hydrothermal method is also applied in the synthesis process of tungsten oxide quantum dots. First, WO_{3-x} nanoparticles were synthesized by a simple hydrothermal method. In a typical procedure, ammonium tungstate hydrate (1 g), PVP (0.50 g) and ethanoic acid (0.50 g) are dissolved in deionized water and ethanol three times. The precipitates were transferred to Teflon autoclave and heated at 180 °C for 12 hours. After that, it was cooled to room temperature, then the product was dialyzed in a 3000 Da dialysis bag against deionized water for 2 days during purification. The resulting light yellow solution was freeze-dried, and a light yellow powder of WO_{3-x} QDs was obtained [32].

The structural characterization of the synthesis results can use the nanosheet mechanism. First, $Na_2WO_2H_2O$ ionized to become WO^{4-}. Then, the WO^{4-} ion will react with the H^+ from the HCl, forming a H_2WO_4 suspension. The suspension decomposes H_2WO_4, with high temperature and pressure in the hydrothermal process, which results in the nucleation of WO_3. The oleic acid will act as a template and control in the absorption and desorption rates. Then, some of the WO_3 nanosheets are disrelated and form a one-dimensional nano-nano chain. The formation process is described as follows [33]:

$$Na_2WO_4.2H_2O \rightarrow 2Na^+ + WO_4^{2-} + 2H_2O$$

$$HCl \rightarrow H^+ + Cl^-$$

$$2H^+ + WO_4^{2-} \rightarrow H_2WO_4$$

$$H_2WO_4 \rightarrow WO_3 + H_2$$

2.2 Sol-Gel Method

The sol-gel method is a popular technique for preparing optofunctional materials, such as TiO2 and WO_3. Recently, UV irradiation has been incorporated into the sol-gel process, which has shown advantages in the synthesis of functional materials [34]. The sol-gel method is a useful and attractive technique for the preparation of nano-sized particles because of its advantages: good stoichiometric control and production of ultrafine particles with a narrow size distribution in a relatively short processing time at lower temperatures [3]. In addition, mesoporous inorganic materials can be prepared using self-assembled surfactants or block copolymers as internal templates using the sol-gel technique [35]. In this method, the precursor / stabilizer selection ratio and the annealing condition will determine the size of the WO_3 nanoparticles produced [36].

The nano-tungsten oxide structure can also be synthesized using the sol-gel method. The main ingredient is $Na_2WO_4.2H_2O$ which is dissolved in deionized water and added HCl dropwise until the pH reaches 1.50. The solution was stirred for 13 hours, then the impurities were removed by rinsing using deionized water and ethanol three times. The precipitates were transferred to an oven at 50°C for 16 hours to obtain a yellow powder. The powder is calcined at a temperature of 450°C for 1 hour in air [26].
In addition to the synthesis of nanostructures on WO$_3$, the sol-gel method can also be used for the synthesis of WO$_3$/TiO$_2$ composites as was done by Yang et al., [37] which dissolved ten milliliters of Ti(OBu$_4$) in 10 mL of anhydrous alcohol, and was dispersed ultrasonically to form a mixture. Five milliliters of water are slowly added to the mixture, then stirred for 1 hour at room temperature. Then the addition of a different ammonium tungstate solution was dropped into the mixture according to the amount of WO$_3$ needed in the WO$_3$/TiO$_2$ nanocomposite. The pH value of the solution is kept constant 10. The solution is left to stand for 12 hours at room temperature, followed by filtering, washing several times with deionized water and anhydrous alcohol, drying at 80°C for 12 hours to produce precursors. Calcination of the precursors at 400°C for different hours in air results in the formation of WO$_3$/TiO$_2$ nanocomposites.

The results of research conducted by Teoh et al. [38] in synthesizing WO$_3$/TiO$_2$ composites using the sol-gel method were that the XRD peak intensity associated with TiO$_2$ increased gradually with increasing calcination time. Nanocomposites hold promise for high-performance visible light-based photocatalysts. A detailed study of the photocatalytic activity of nanocomposites is ongoing. In the same method L. Liu et al. [35]. Reported that the results obtained from this synthesis in the form of an electrodeposition approach based on electrochemical redox from nanoscale objects can be extended to various transition metal oxide nanoscale objects of various sizes and shapes. Figure 3 shows the variations in film thickness, contrast, staining, and bleaching time as a function of the high deposition potential and interface resistance. Initial bleaching between the surface of the substrate / film causes high inter-surface resistance and inhibits the bleaching of the outer layer of the film. The results show that the thickness and electrochromic performance of WO$_3$ film can be regulated by time and electrodeposition potential.

![Figure 3](image_url)

Figure 3. Images (A), (B), (C), and (D) are the effects of deposition potential and time in the WO$_3$ film. Image adopted from [35]

2.3 Low Temperature Hydrolysis and Chemical Reaction Method in Water-In-Oil Sucrose Ester Microemulsion

Microemulsion methods have been explored for synthesizing metals, ceramics and polymers. Particles with clear geometries and sizes can be carried out by this synthesis method because all processes are limited in nano-sized droplets (nanoreactors) [34].

19
In the first method, with or without a microemulsion with a composition: 30 wt.% of S1570, 50 wt.% tetradecane/1-butanol and 20 wt.% aqueous solution containing 4 wt.% tungsten (VI) chloride, stirring vigorously for 2 hours at an ambient temperature of 45°C. Then this solution was stored at 60°C for 4 days and washed several times with deionized water and absolute ethanol to remove surfactants, remaining reactants, and by-products. All precipitates were placed in a furnace at 500°C for 2 hours (hereafter denoted as sample 1).

In the second method, two types of microemulsion without composition: 30 wt.% of S1570, 50 wt.% tetradecane/1-butanol and 20 wt.% aqueous solution were prepared. After stirring and obtaining a homogeneous solution, a microemulsion containing an ammonia solution was added to another microemulsion containing tungsten (VI) chloride. The microemulsion mixture was stirred for 3 hours at about 45°C, then stored at room temperature for 3 days to precipitate. After washing several times with deionized water and absolute ethanol to remove surfactants, residual reactants and by-products, the precipitate was stored in the furnace at 500°C for 2 hours (hereinafter denoted as sample 2).

The CTAB micelle solution used in this study had a composition of 30 wt.% CTAB, 54 wt.% 1-hexanol and 16 wt.% water solution. This composition belongs to the inverted micelle region. For the preparation of WO₃ nanoparticles, two micellar solutions of the above-mentioned composition with aqueous solutions containing 3.10 and 12.50% by weight of tungsten (VI) chloride and ammonia, respectively. After stirring and obtaining a clear solution, micelle solution containing ammonia solution is added to another micelle solution containing tungsten (VI) chloride. The mixed micelle solution was stirred for 4 hours at about 50°C, then kept at room temperature for 3 days to settle. After washing several times with deionized water and absolute ethanol to remove surfactants, residual reactants, and by-products, the precipitate was stored in the furnace at 500°C for 2 hours (denoted as sample 3) [39].

The results obtained in experiments conducted by Asim et al. [39] showed that in their research there was no significant difference between the WO₃ nanoparticles obtained from the use of one sucrose ester microemulsion with a heat aging process and a mixing process of two sucrose ester microemulsions. In both methods using a sucrose ester microemulsion as a template, it is spherical in shape with an orthorhombic lattice and the particle size is roughly between 10 and 50 nm. WO₃ nanoparticles prepared through a CTAB micelle solution are spherical with a larger size range between 25-50 nm and an orthorhombic lattice. Further work to optimize reaction conditions such as precursor concentrations and temperature for all the methods mentioned to prepare smaller size ranges with very narrow size distributions is still ongoing. Finally this study shows that the microemulsion of sucrose ester (biodegradable surfactant) is suitable for synthesizing WO nanoparticles.

2.4 Calcination Method

Calcination is the process of heating, removing water, carbon dioxide or other gases that have bonds with the material at high temperatures below the melting point of the material. In the synthesis process of nano-sized WO₃, the casination method can be carried out using H₂P₄W₁₂O₄₀·xH₂O as the main ingredient. H₂P₄W₁₂O₄₀·xH₂O is dissolved in water which contains 40% silica particles. The mixture was then stirred for 1 hour and dried in an oven at 80°C to evaporate the solvent. After that, it was calcined at 600°C for 2 hours. The yellow powder formed was then soaked using a hydrofluoric acid solution for 3 hours to remove the remaining silicasper. The mixture is then centrifuged and rinsed using distilled water until it reaches a pH of more than 5 and rinsed once using acetone. After that, it was dried in an oven at 100°C for one night [40].

Experiments conducted by Tijani et al. using Spondias Mombin leaf extract has the following work steps; Spondias Mombin leaf extract is added slowly to the ammonium partungstate solution then heated at 120°C while stirring at 150 rpm for 30 minutes. Then slowly added HNO₃ to adjust the pH so that it is in an acidic condition then NH₄OH is added to add the pH to be between 7; 10; and 13. The solution is stirred for 30 minutes and a white precipitate will form. The precipitate is then rinsed using distilled water to remove impurities and then dried at 80°C.
The advantages of the research conducted by Tijani et al. [41] is a reagent that is used environmentally friendly and works specifically, the results obtained in the form of solution pH and calcination temperature play an important role in regulating morphology and structural properties such as average crystal size and surface area. It is known that the crystal size increases with the increase in solution pH and calcination temperature as seen from the XRD peak shown in Figure 4.

![Figure 4. XRD pattern of WO3 nanoparticles with optimization at (a) pH 1, b) pH 4, c) pH 7, d) pH 10, and e) pH 13. The image is adopted [41]](image)

There was no change in the WO$_3$ phase type at the pH of the applied solution and the calcination temperature, only monoclinic polymorphs were obtained. The acid medium supports the formation of the pure monoclinic symmetry of WO$_3$.

2.5 Fire-Assisted Spray Pyrolysis Method

Flame synthesis from active nanoparticles can provide access to new structures and materials not available through conventional techniques [42]. To synthesize WO$_3$/TiO$_2$ composite nanoparticles, a fire-assisted spray pyrolysis method can be used. Flame technology is a scalable, sustainable and well-established method for the production of large quantities of nanoparticles [38]. This method is effective for producing agglomeration-free particles and has the potential for high-rate production and one-step process applications [43]. Composite nanoparticles were made from precursors containing AMT ((NH$_4$)$_6$(H$_2$W$_{12}$O$_{44}$·xH$_2$O) as WO$_3$. The precursors were made by dissolving AMT in DMF, then stirring at 400 rpm at 40 LC. After 40 minutes of mixing, TTIP was added to the precursors and stirring for several minutes. The mass ratio between AMT, TTIP is varied. The precursors are then introduced into the particle production system. The particle production system consists of an ultrasonic nebulizer, a diffuser flame burner, a glass flame reactor, and a filter bag to collect particles. The precursors are first atomized using ultrasonic nebulizer to produce droplets. The resulting droplets are then carried to a diffusion flame burner with nitrogen gas flow at 1 L/min. Methane gas is used as fuel gas with a flow rate of 1 L/min. [1].

The results of experiments conducted by [1] showed that the photocatalytic performance of the WO$_3$/TiO$_2$ nanoparticle composites was higher than the catalyst containing 100% by weight of TiO$_2$. The effect of mass composition on crystal size, the results are summarized in Table 1.

The increasing number of AMT leads to the production of smaller sized particles. The increase in photocatalytic activity is mainly influenced by the bandgap energy. However, apart from the presence of a band gap, the surface area also plays an important role in changing the photocatalytic activity. Although the current photocatalytic activity is still low, information on the effects of WO$_3$ and TiO$_2$ compositions in catalysts opens up new information to create more varied properties for exploratory applications.
Table 1. Effect of Mass Composition on Crystal Size

<table>
<thead>
<tr>
<th>AMT (wt%)</th>
<th>TTP (wt%)</th>
<th>WO₃ Crystal Size (nm)</th>
<th>TiO₂ Crystal Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>-</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>5.4</td>
<td>39</td>
</tr>
<tr>
<td>25</td>
<td>75</td>
<td>5.5</td>
<td>37</td>
</tr>
<tr>
<td>55</td>
<td>45</td>
<td>5.7</td>
<td>33</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>11</td>
<td>-</td>
</tr>
</tbody>
</table>

2.6 Ultrasound Method

Synthesis of TiO₂/WO₃ nanoparticles by Anandan et al. [2] with ultrasonic assistance was carried out in the following steps: About 2.85 mL of titanium isopropoxide was dissolved in 60 mL ethanol. Next, 3.30 g sodium tungstate in 40 mL water was added to the above mixture slowly for 10 minutes at room temperature under an Argon gas atmosphere. In this way, 10 mmol of titanium isopropoxide and sodium tungstate are mixed. Then, 0.30 M HNO₃ was added over the top of the mixture and stirred for 10 minutes. The resulting solution was irradiated with a high intensity ultrasonic horn (Ti-horn, 20 kHz, 100 W/cm²) in the Argon atmosphere for 2.5 hours at room temperature. After sonication, the precipitate was centrifuged and washed using distilled water followed by ethanol several times; then the samples were dried under vacuum at 80°C for about 6 hours. The powder obtained was then calcined at 400°C for 2 hours in air with TiO₂/WO₃ nanoparticles.

The results obtained were the absorbance of TiO₂/WO₃ nanoparticles located at about 426 nm, a shift of 40 nm compared to TiO₂ (Degussa) nanoparticles (387 nm). The Tauc plot also revealed a nanoparticle band gap of about 2.94 eV. The SEM and TEM images in Figure 5 of the TiO₂/WO₃ nanoparticles that have been prepared show that the sample consists of mixed particles of square shape, hexagonal diameter of 8-12 nm and the sample crystallizes well. Upon viewing through high resolution TEM (Fig. 5C), it is evidenced that the particles are attached together, making aggregates by sharing between them corners or edges involving probably the formation of Ti–O–W bonds [44,45]. Increasing catalytic activity can be done by increasing the surface area, modifying the structure, morphological properties or producing a new structure. The best way to increase the effectiveness of the catalyst is to modify the surface of the TiO₂ semiconductor with metal. Modification with WO₃ is a good form because it can absorb more amounts of OH or H₂O. The preparation of TiO₂/WO₃ nanocomposites is also advantageous because a small portion of the UV spectrum can be absorbed. In this case it should be noted that the band gap of WO₃ is smaller than that of TiO₂.

Figure 5. SEM (A) and HRTEM (B,C) from TiO₂/WO₃. Image adopted from [2].
2.7 Microwave Irradiation Method

Tungsten oxide can be hydrated by microwave irradiation methods with and without the using EDTA as surfactant. In this process it takes about 10 minutes with the result of a pale yellow product. The results of XRD powder confirms orthombic phase formation of perovskite such as structures.

The first process, the precursor solution is made by dissolving 2.49 g of tungstat acid (H₂WO₄) in 10 mL of sodium hydroxide (NaOH). It produces a yellow color on a hydrated sodium tungstat solution due to the proton exchange process [46]. Then 0.50 g EDTA (that is 20% tungstat acid weight) added to the precursor solution, acts as surfactant, and several drops of HCl are inserted into the solution. The solution needs to reach the value of pH 1. HCl acts as a deposition substance as well as a medium so that the product has the desired morphology [47]. Approximately 5 mL of double distilled water that is 50 vol.% of the precursor solution is added with the above solution sequentially to respond the microwave quickly. The final solution is presented to the microwave (2.45 GHz) with an optimal power of 180 W for 10 minutes in the air atmosphere. Irradiation is carried out to remove water by drying at 60°C in the air for 1 hour. The process is repeated without adding EDTA salt under the same conditions. Both of that products produce yellow powder that is originalized at 600°C in the air for 6 hours until anhydrous tungsten oxide crystals form [48].

The results of the study conducted by Hariharan et al. [48] showed that in the diffraction results of the powder X-rays confirmed that WO₃. The H₂O that has been prepared respectively is the orthombic phase and W₁₈O₄₉ becomes the monoclinical phase. XRD pattern of EDTA assisted W₁₈O₄₉ sample contains more number of peaks and they are sharper when compared to that of the sample prepared without surfactant. This is attributed to the fact that the structure variation between WO₃ and WO₂ leads to change in linking of coordination polyhedral from corner sharing to edge sharing [49]. Thus the presence of EDTA enhances the crystallinity and reduces the oxygen content of the end product.

The transmission electron micrograph (TEM) in Figure 6 reveals that the W₁₈O₄₉ nano sheet has an average dimension of 250 nm long and a width of about 150 nm that serves as a building block for the formation of the W₁₈O₄₉ bundle. In the UV-Vis Diffusion Reflectance Spectroscopic (DRS) study, the band gap energy was 3.28 and 3.47 eV for WO₃ samples. H₂O and W₁₈O₄₉, respectively.

![Figure 6. TEM micrograph from WO₃.H₂O is synthesized without adding EDTA (a and b) and synthesized using EDTA (c). Image adopted from the [48]](image-url)

Based on the literature studies that have been conducted, it can be known that the hydrothermal method is a good method for WO₃ synthesis because the powder is formed directly from the solution, particle size and shape can be controlled using the initial material and different hydrothermal conditions, and the resulting powder is high. Moreover, hydrothermal methods use water solvents to dissolve precursors or reactives so that they are considered more practical and are a fairly abundant common solvent.
<table>
<thead>
<tr>
<th>Material</th>
<th>Research Group</th>
<th>Methods</th>
<th>Result</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium tungstate hydrate (Na₂WO₄·2H₂O)</td>
<td>Jamali and Shariatmadar Tehrani</td>
<td>Sol-gel method and hydrothermal method</td>
<td>W₅ Structure and W₉₀.9₀ hexagonal, W₉₄.5₀ monoclinic, W₁₈₀.8₀ orthorhombic (crystal size increases with calcination and increased synthesis temperature) Morphology of sol-gel sample is in the form of plate particles (after in annealing), and morphology of hydrothermal sample is in the form of rod particles Raman tape scattering spectroscopy korespon to the vibration of WO₃ molecular</td>
<td>Hydrothermal methods are effectively used for the synthesis of 1D WO₃ because solubility increases with increased temperature followed by increased nucleation which will reduce the amount of sodium ions surrounding each nucleus.</td>
<td>The growth mechanisms in plate particles and particle rod WO₃ nanostructures cannot be explained</td>
<td>Jamali and Shariatmadar Tehrani, 2020</td>
</tr>
<tr>
<td>Anandan, S., et al.</td>
<td>Ultrasound method</td>
<td>Nanopartikel TiO₂ / WO₃ menunjukkan pita energi gap sekitar 2.94 eV Electrons can be injected into WO₃ which can be used to reduce W(V) becomes W(VI): W⁶⁺ + e⁻ → W⁵⁺ Absorbance for TiO₂/WO₃ nanoparticles is located at approximately 426 nm with red tape shifting by 40 nm compared to TiO₂ nanoparticles (Degussa) 387 nm. Degradation of blue methylen (BM) under visible light illumination</td>
<td>This method is appropriate because when the TiO₂ / WO₃ nanoparticles are combined it is possible to absorb a higher number of photons The addition of TiO₂/WO₃ nanoparticles shows faster BM degradation under irradiation-looking light compared to TiO₂ nanoparticle particles</td>
<td>Pure TiO₂ limited photokatalithic activity because recombination between photogeneration payloads and low Methyl B adsorption and inhibited desorption</td>
<td>Anandan, S., et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Song et al.</td>
<td>Hydrothermal method with K₂SO₄</td>
<td>The addition of K₂SO₄ is helpful in the process of crystallization and growth of WO₃, nanowires No WO₃ nanowires can form without the presence of K₂SO₄</td>
<td>There is no mention of the advantages in the article</td>
<td>Pure TiO₂ limited photokatalithic activity because recombination between photogeneration payloads and low Methyl B adsorption and inhibited desorption</td>
<td>Song et al., 2007</td>
<td></td>
</tr>
<tr>
<td>Jin et al.</td>
<td>Thermal oxidation methods, hydrothermal methods, anode electrochemical oxidation method</td>
<td>Sensor which is made of hydrants show sensitivities as high as ~32 35 ppm ethanol at an optimal temperature of 35°C, and also exhibiting excellent selectivity and stability, respectively, as sensor materials promising for detection of low ethanol concentrations</td>
<td>Potential for C₂H₅OH detection WO₃ sensor displays better sensing properties</td>
<td>Cannot affect crystal texture in final process</td>
<td>Jin et al., 2019</td>
<td></td>
</tr>
<tr>
<td>Gibot, Pierre., et al.</td>
<td>Calcination method uses silica nanosphere as a reagent</td>
<td>Increasing the silica / tungsten precursor will cause the formation of WO₃ which is smaller and less aggregate.</td>
<td>The calcination method using silica nanosphere as a porous template is suitable for synthesizing WO₃ because silica nanosphere can be</td>
<td>There is no mention of deficiencies in the article</td>
<td>Gibot, Pierre., et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Method</td>
<td>Result</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huraiche-Acuna et al.</td>
<td>Two-step-aged hydrothermal method</td>
<td>Hexagonal (\text{WO}_3) nano structure, Irregular and aggregate particles, Oxygen ratio: tungsten 3:1, Length 30-200 nm and width 20-70 nm, (\text{O}_1) tape position 530.3 eV and (\text{W}_4) 40.6 eV, the top of binding energy is located at 35.4, Direction of growth of nano tungsten oxide structure along axis with inter-planar distance of 0.38 nm, The growth mechanism can be determined by HRTEM, There is no filth phase on XRD, Monoclinical formation ((807 \text{ and } 715 \text{ cm}^{-1})) hexagonal (\text{WO}_3) not found in Raman spectrum</td>
<td>Huraiche-Acuna et al., 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al.</td>
<td>Sol-Gel method</td>
<td>The XRD peak intensity associated with (\text{TiO}_2) increased gradually with increasing calcination time, The addition of (\text{WO}_3) involve a decrease in the C-axis parameters on the (\text{TiO}_2), which also increases with the increased calcination time, These nanocomposites hold promise for high-performance visible light-based photocatalysts, WO(_3/\text{TiO}_2) nanocomposites have been successfully created with the sol-gel method, These nano composites promise to be high-performance visible light-based photo catalysts, There is no mention of deficiencies in the article</td>
<td>Yang et al., 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arutanti et al.</td>
<td>A flame assisted spray pyrolysis</td>
<td>Total AMT (from 0 to 25 wt%) has shown a significant impact on photocatalytic performance, The photocatalytic performance of (\text{WO}_3/\text{TiO}_2) nanoparticle composites is higher than catalysts containing 100% by weight of (\text{TiO}_2), This method is effective to produce agglomeration free particles and has the potential high production rates and one-step process applications, The chemical conversion product is free of impurities, The (\text{WO}_3) conduction band, when (\text{TiO}_2) is present, is suitable for enabling the transfer of photogenerated electrons and the phenomenon of charge separation, The combination of these materials is able to reduce the total cost of production because this composite material is low cost than the price of pure (\text{WO}_3) material (the price of (\text{TiO}_2) is inexpensive than (\text{WO}_3)), An increase the amount of AMT aim to production of smaller particles, Changing the amount of AMT causes changing a different color, which indicates this amount affects the elemental composition of the particles.</td>
<td>Arutanti et al., 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tijani et al.</td>
<td>Calsination method using (\text{Spondias mombin}) extract</td>
<td>Sample of plants has a higher number of polyphenols can function as an environmentally stabilizer, reducing agent and barrier in the synthesis of (\text{WO}_3) nanoparticles, The reagent used is not toxic, environmentally friendly and specific, There is no mention on the article</td>
<td>Tijani et al., 2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructures can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructures can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructures can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructures can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructures can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructures can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructures can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
<tr>
<td>WO$_3$ powder (Merck)</td>
<td>Liang Lu, dkk., 2014</td>
<td>Metode sol-gel</td>
<td>The thickness and electrochromic performance of the WO$_3$ film can be regulated by the time and electrodeposition potential</td>
<td>Morphological pores can easily experience electrolyte penetration in the film, leading to the surface of the active area. Nanostructured can facilitate intercalation / deintercalation of Li$^+$ ions compared to large crystals obtained by sintering. Dispersion water of the crystalline WO$_3$ nanoparticles is stabilized by electrostatic repulsion, free of surfactants. This prevents the surfactant remaining in the film. The layer with mechanism in electrodeposition is based on the high conductivity of the reduced WO$_3$ nanoparticles, inherently ensuring good electro-contact and low resistance between nanoparticles. Crystal structure provides higher stability in the dye-bleaching cycle compared to amorphous films.</td>
<td>Repeated dip-coating or spin-coating, which is poor contact between the layers and consequently is stored.</td>
<td>L. Liu et al., 2014</td>
</tr>
</tbody>
</table>
3. Conclusion
Based on several methods used to synthesize WO₃ and WO₃ nanocomposites from various types of available materials, such as sodium tungsten dihydrate, AMT (ammonium metatungsten), Phosphotungsten Acid, H₂WO₄, Cl₂W, and W powder (Merck). The most efficient and effective method is the hydrothermal method because the heating process of the reactants is carried out in a closed container so that the pressure and temperature can increase rapidly. In addition, it produces less impurities when compared to other methods. It can be concluded that the hydrothermal method is inexpensive and more efficient.

References

26. M. Jamali, F. Shariatmadar Tehrani, Effect of synthesis route on the structural and morphological

https://doi.org/10.1163/156855206778440525.

https://doi.org/10.1016/j.jeurceramsoc.2009.05.014.

https://doi.org/10.1021/jp064777b.

https://doi.org/10.1016/S0032-5910(02)00093-1.

https://doi.org/10.1016/j.jallcom.2011.01.159.
