Anaerobic Biodegradability Modelisation of Cellulose Auto-Catalytic Model

S. El Barkany¹*, A. El Idrissi²*, M. Abou-Salama¹, A. Maaroufi³, C. Zanagui⁴, H. Amhamdi⁴

[¹ Multidisciplinary Faculty of Nador, Mohamed 1st University, 60700 Nador, Morocco
² Laboratory Applied chemistry and environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohamed 1st University, 60000 Oujda, Morocco
³ Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, University of Mohammed V, Rabat- Agdal, Morocco
⁴ Laboratory of Physical Chemistry of the Natural Resources and Environment, Faculty of Sciences and Techniques in Al Hoceima, (Med I University), 32 003 Al Hoceima, Morocco

*Corresponding Author: el.barkany011@gmail.com, ab.elidrissi@yahoo.fr, Tel: (+212) 6 66 57 70 11, Fax: (+212) 5 36 50 06 03

In this study, we described the biodegradation process of cellulose based on the Boltzmann distribution derived from autocatalytic kinetics. From the autocatalytic model (MAC) we concluded that the molecular weight, temperature, and the interaction parameter (x) (type of polymer and biodegrading agent) are the major factors governing the phenomenon of biodegradation. The modeled results and the experimental results, according to the ASTM D5511 protocol, present a good correlation.

Received: 17 May 2016
Accepted: 14 June 2016
Available online: 09 July 2016

Keywords:
Biodegradation
Cellulose
Autocatalytic

Introduction

Biodegradation is defined, according to US Environmental Protection Agency (EPA), 2009, as “the process by which microbial organisms transform or alter (through metabolic action, or enzymatic) the chemical structure introduced into an environment”. While the biodegradability, according to EPA, is “the relative susceptibility to degradation resulting from the metabolism organic. The biodegradability is variable and depends on the type of product (polymer). In general, the biodegradability increases with the increase of the solubility, which is inversely proportional to molecular weight $M_w$.” Enzymatic biodegradability [1, 2] and microbial [3-5] is a measurable parameter in the evaluation of the amount of CO₂ generated, the amount of O₂ consumed (aerobic), the variation of the molecular weight, the mass loss or other physical properties [6-9]. The biodegradability of the polymers in general (especially cellulose) is not only conditioned by chemical factors (concentration, structure, etc.), but it is also highly dependent on the environmental factors such as weather conditions, the moisture, oxygen, organic matter, microorganisms, etc. The diversity and the large number of parameters governing the biodegradability limit the understanding of the kinetics and mechanisms. The modeling is a useful method and widely exploited for understanding the chemical processes in often complex degradation systems [10]. In this paper, we propose the Boltzmann distribution equation derived from the autocatalytic kinetic model to understand the change in the anaerobic biodegradability process of the cellulose material.

We assume in this study that all types of energy involved in the process of biodegradation ($\sum_{i=1}^{n} \text{energy}_{biod} (i)$) are equivalent to thermal energy ($\text{energy}_{thermal}$):
\[
\sum \text{energy}_{\text{biodeg}} = \sum \text{energy}_{\text{thermal}} \quad (1)
\]

Development of autocatalytic model

Autocatalytic kinetics equation:

In general, the autocatalytic reaction between two reactants A and B can be schematized by the equation 2:

\[
A + B \rightarrow B + B \quad (2)
\]

The rate law for this reaction is given by the equation (3):

\[
\frac{-d[A]}{dt} = K \left[ A \right] \left[ B \right] \quad (3)
\]

\[
\left[ B \right] = \frac{[A]_0 + [B]_0}{1 + \left[ \frac{x}{x_0} \right] \exp \left( \left[ [A]_0 + [B]_0 \right] kr \right)} \quad (4)
\]

Over time and under the action of the biodegradation agents, the rate of the biodegradation reaction starts substantially low in the early stages and increases to reach the maximum and then decreases and becomes zero. In contrast, in the case of the “Ekenstam” kinetic, the rate begins at maximum value then decreases towards zero.

In addition, the kinetic of a reaction, by definition, is the variation of such physical property describing the state of the reaction system as a function of time, and we have chosen for this study the molecular weight as a determinant parameter of biodegradation study.

We can consider the process of biodegradation as an autocatalytic reaction schematized by the reaction equation below:

\[\text{Polymer} \left( M_w \right) + \text{BAE} \rightarrow \text{Biomass} + p\text{BAE} + m\text{CO}_2\]

Where:

- Polymer (\(M_w\)): the polymer having a molecular weight \(M_w\).
- BAE: bioactive element.
- \(p\): the stoichiometric coefficient of the BAE at the end of the biodegradation reaction.
- \(m\): the stoichiometric coefficient of the carbon dioxide resulting from the biodegradation.

We propose in this study the molecular weight as the physical property describing the state of the biodegradation system over time. According to the autocatalytic kinetic law (equation 4), the kinetic equation that describes the variation of the molecular weight of the polymer has the following expression:

\[
M_w \left( t \right) = \frac{M_w \left( 0 \right) + \mu_{\text{BAE}}}{1 + \exp \left( \left( M_w \left( 0 \right) + \mu_{\text{BAE}} \right) k_{bd} \right)} \quad (5)
\]

\(\mu_{\text{BAE}}\) is a constant that depends on the BAE-polymer interactions (the average molecular weight of BAE interaction at \(t = 0\)) and \(k_{bd}\) is the rate constant of the biodegradation reaction.

Assuming that:

\[
\mu_{\text{BAE}} = xM_w \left( 0 \right) \quad (6)
\]

The \(M_w(t)\) take then the form showed in the equation (7).

\[
M_w \left( t \right) = M_w \left( 0 \right) \left( 1 + x \right) - \frac{M_w \left( 0 \right) \left( 1 + x \right)}{1 + \frac{1}{x} \exp \left( -t \left( M_w \left( 0 \right) \left( 1 + x \right) \right) k_{bd} \right)} \quad (7)
\]

We normalize the molecular weight and we get the following expression:

\[
\frac{M_w \left( t \right)}{M_w \left( 0 \right)} = \alpha \left( t \right) = \left( 1 + x \right) \left[ 1 - \frac{1}{1 + \exp \left( \frac{t - \ln \left( \frac{1}{\alpha \left( t \right)} \right) k_{bd}}{M_w \left( 0 \right) \left( 1 + x \right) k_{bd}} \right)} \right] \quad (8)
\]

The second derivative of equation (8) is zero at \(t_{\text{max}}\) where \(t_{\text{max}}\) is the time required to reach the maximum rate of the biodegradation and has the following expression:

\[
t_{\text{max}} = \frac{\ln \frac{1}{\alpha \left( t_{\text{max}} \right)}}{M_w \left( 0 \right) \left( 1 + x \right) k_{bd}} \quad (9)
\]

The time to reach the maximum speed of biodegradation \((t_{\text{max}})\) depends on the initial molecular weight of the polymer, the type of the bioactive element and the temperature.

Whether

\[
dt = \frac{1}{M_w \left( 0 \right) \left( 1 + x \right) k_{bd}} \quad (10)
\]

Journal homepage: http://revues.imist.ma/?journal=JOWSET
\[ x = \exp\left(-\frac{t - t_{\max}}{d t}\right) \]  
(11)

We get:

\[ \alpha(t) = \frac{A - B}{1 + \exp\left(\frac{t - t_{\max}}{d t}\right)} + B \]  
(12)

Equation (12) is a Boltzmann distribution, which describes the autocatalytic kinetics and it, can be written in the form below:

\[ \alpha(t) = \frac{A - B}{1 + \exp\left(\frac{t - t_{\max}}{d t}\right)} + B \]  
(13)

Where:

B is the fraction of non biodegraded molecular weight, which is not converted into carbon dioxide and methane throughout time $\lambda$, $d t$ is the Boltzmann slope factor. A and B, in other words, are the ends of the normalized weight distribution curve where $d\alpha(t)/dt = 0$:

\[ A = 1 + x \text{ and } B = \alpha(t = \lambda) \]

The equation (13) becomes:

\[ \alpha(t) = \frac{(1 + x) - \alpha(t = \lambda)}{1 + \exp\left(\frac{t - t_{\max}}{d t}\right)} + \alpha(t = \lambda) \]  
(14)

The rate of biodegradation, then, is given by the value of $1 - \alpha$.

The rate constant of biodegradation $k_{bd}$

The activation energy $E_a$ is, by definition, the energy barrier to trigger a reaction. Assuming in the case of a biodegradation reaction, the bioenergetics barrier is equivalent to the thermal barrier degradation. Indeed, considering the energy value and not its appearance and its nature, the thermal effect on the degradation of the polymer can be assimilated to the action of bioactive components (bacteria, fungi, etc.).

The biodegradation rate constant ($k_{bd}$) can be estimated using the results of thermo gravimetric analysis (TGA), from the Arrhenius law [11]:

\[ k_{bd} = A_o \sqrt{\frac{E_a}{k_B \cdot R T}} \]  
(15)

Activation energy $E_a$ and the pre-exponential factor $A_o(T)^{1/2}$ can be estimated from the thermogravimetric analyzes.

The determination of kinetic parameters was the subject of many research areas; the dynamic method is one of the methods that have attracted the attention of experimenters. It consists in tracing the natural logarithm of the heating rate (ln$\beta$) as a function of the inverse of the temperature at the maximum degradation ($T_{\max}$) [12]:

\[ \ln \beta = \ln A_o + \frac{3}{2}\ln T_{\max} - \ln \left(\frac{E_a}{RT_{\max}} + \frac{1}{2}\right) - \frac{E_a}{RT_{\max}} \]  
(16)

From equation (16) the variation of the heating rate logarithm is inversely proportional to the maximum temperature of thermal degradation ($T_{\max}$). The curve is a line with slope (-$E_a/R$). To determine $A_o$, then just replace the values of $E_a$, $\beta$ and $T_{\max}$ in equation (16).

Model verification

Determination $k_{bd}$

Cellulose 20$\mu$m with molecular weight $\sim$ 36300 [13] has been selected as sample application to justify the model described. The results of the thermal analysis (TGA) of the cellulose used (Fig 1) are extracted from the thesis work of Cedric Reronte, 2007 [14].

![Image](Fig. 1: Experimental mass "raw" standard, according to the temperature in °C of the thermal degradation of cellulose, for heating rates equal to 5, 10, 20 and 30 °C.min)

By the method of tangents we determine the temperature of the maximum degradation rate, then we trace the curve $\ln\beta = f(1/T_{\max})$ to determine the activation energy (Fig 2):
Fig. 2: The curve \( \ln \beta = f(1 / T_{\text{max}}) \) to determine the activation energy.

Substituting the value of the activation energy in equation (18) at 52\(^\circ\)C, and the value of the constant biodegradation was obtained:

\[
k_{bd} = 2.73 \times 10^{-7} \text{ h}^{-1}
\]

Cellulose biodegradation prediction

The experimental results are performed by NSF International Standard using ASTM D5511 at 52 \(^\circ\)C [15] and compared to modeled results (fig 3):

\[
\begin{align*}
    \alpha (t) & = \frac{1 + 0.0246}{1 + \exp \left( \frac{1}{357.75} \right)} \\
    \ln M_x (0) & = 365 h \\
    \ln \left( \frac{1}{M_x (0)(1 + x)k_{bd}} \right) & = 98.5 h
\end{align*}
\]

Conclusion

This study was performed to model the phenomenon of the anaerobic biodegradation of cellulose. From the experimental results according to the ASTM D5511 protocol, we described the biodegradation process based on the model Boltzmann derived from autocatalytic kinetics. Moreover, from the autocatalytic model (MAC) we concluded that the molecular weight, temperature, and the interaction parameter \( x \) (type of polymer and biodegrading agent) are the major factors governing the phenomenon of biodegradation. Also, we suggest that the interaction parameter \( x \), setting the experimental conditions, depends on the chemical structure of the polymer studied, and therefore, this parameter will be linked to the solubility parameter.

Acknowledgements

This work was supported by CNRST under grant n° PPR/2015/17. We thank greatly the CNRST and the anonymous reviewers for their careful review and valuable suggestions on the manuscript.

References


