Indexer les métadonnées

Failure Prediction: Discriminant Analysis on a Sample of the Moroccan SME/LE


 
Dublin Core Éléments de métadonnées PKP Métadonnées pour ce document
 
1. Titre Titre du document Failure Prediction: Discriminant Analysis on a Sample of the Moroccan SME/LE
 
2. Créateur Nom de l'auteur, affiliation, pays Rabia MESKINI; Université Ibn Tofeil; MAROC
 
3. Sujet Discipline(s)
 
3. Sujet Mot(s)-clé(s) Business failure; risk prediction; discriminant model,;SME/LE
 
4. Description Résumé

In the current perpetual economic context, several companies have undergone economic and financial difficulties which can, in certain cases, lead to bankruptcy. Indeed, the factors explaining the failure of companies are multiple. The objective of our study is to classify companies in difficulty according to their degree of viability. We will refer to the statistical methods and more precisely the discriminant analysis, allowing to understand the most determining variables of the deterioration of their situation, through a sample of 669 Moroccan companies. This study has revealed that the bankruptcy of companies is partly linked to financial autonomy, Gearing, inventory turnover, activities and management, profitability of assets and net return on equity, the share of WCR in relation to turnover and indebtedness.

 
5. Éditeur Agence organisatrice, lieu
 
6. Contributeur Commanditaire(s)
 
7. Date (AAAA-MM-JJ) 15-11-2022
 
8. Type Statut & genre Article évalué par les pairs
 
8. Type Type
 
9. Format Format de fichier PDF
 
10. Identifiant URI https://revues.imist.ma/index.php/JOSSOM/article/view/35731
 
10. Identifiant Digital Object Identifier (DOI) https://doi.org/10.48434/IMIST.PRSM/jossom-v3i2.35731
 
11. Source Titre de revue/conférence; vol., no. (année) Journal Of Social Science and Organization Management; Vol. 3, No 2 (2022)
 
12. Langue Français=fr EN
 
13. Relation Fichiers supp.
 
14. Couverture Localisation géo-spatiale, période chronologique, échantillon de recherche (sexe, âge, etc.)
 
15. Droits Droit d'auteur et autorisations Tous droits réservés (c) 2022 Rabia MESKINI
Creative Commons License
Cette oeuvre est protégée sous licence CC Attribution-Pas d'Utilisation Commerciale-Pas de Modification 4.0 Licence Internationale.