LA GESTION DU RISQUE DE FRAUDE EN ASSURANCES AUTOMOBILE – CAS D’UNE COMPAGNIE D’ASSURANCES MAROCAINE

Auteurs-es

  • Ghita HAJRAOUI
  • Fatima EL KASSIMI
  • Jamal ZAHI

Mots-clés :

Assurance, Système d’information, Détection, Fraude, Veille stratégique, Gestion de risque

Résumé

Abstaract :

The problem of external fraud is becoming more and more important for automobile insurance companies, to the point of becoming a real challenge. Today, the ability of companies to control and detect fraud remains underdeveloped and is often based on suspicion. As a result, many cases can be fraudulent without the company realizing it, resulting in huge financial losses that could jeopardize its survival.

This article led to the design of a draft information system for the automatic detection of fraud in order to optimize the operational management of the risk of fraud and to reduce the financial losses incurred. Thus, we were able to note the importance of moving from detection by suspicion to detection based on objective indicators that the company could implement in its information system.

Résumé :

La problématique de la fraude externe prend de plus en plus d’ampleur chez les compagnies d’assurances automobile au point de constituer un véritable défi. Aujourd’hui, la capacité de contrôle et de détection des fraudes par les compagnies reste peu développée et est souvent basée sur la suspicion. Par conséquent, plusieurs dossiers peuvent être porteurs de fraude sans que la compagnie ne s’en rende compte accusant ainsi d’énormes pertes financières risquant de mettre en péril sa pérennité.

Cet article a abouti à la conception d’une ébauche d’un système d’information de détection automatique de la fraude dans le but d’optimiser la gestion opérationnelle du risque de fraude et de réduire les pertes financières encourues. Ainsi, nous avons pu relever l’importance du passage de la détection par suspicion à une détection sur la base d’indicateurs objectifs que la compagnie pourrait implémenter au niveau de son système d’information.

Mots-Clés : Assurance, Système d’information, Détection, Fraude, Veille stratégique, Gestion de risque.

Références

Cruz, C., Dorronsoro, J. R. & González, A. M. (2002). Extreme Sample Classification and Credit Card Fraud Detection. In E-Commerce and Intelligent Methods (pp. 136-155). Physica, Heidelberg.

Bolancé, C. et al., (2011). Loss risk through fraud in car insurance (No. XREAP2011-08).

Cressey, D. R. (1955). Changing criminals: The application of the theory of differential association. American Journal of Sociology, 61(2), 116-120

Dzomira S. (2015), Fraud prevention and detection. Reasearch Journal of Finance and Accounting. Vol.6. N°14, pp 37 – 43.

Behdad, M., Barone, L., Bennamoun, M., & French, T. (2012). Nature-inspired techniques in the cntext of fraud detection. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 1273-1290.

Crocker, K. J., & Tennyson, S. (2002). Insurance fraud and optimal claims settlement strategies. The Journal of Law and Economics, 45(2), 469-507

Tennyson, S., & Salsas‐Forn, P. (2002). Claims auditing in automobile insurance: fraud detection and deterrence objectives. Journal of Risk and Insurance, 69(3), 289-308.

Derrig, R. A. (2002). Insurance fraud. Journal of Risk and Insurance, 69(3), 271-287.

Artís, M., Ayuso, M., & Guillén, M. (2002). Detection of automobile insurance fraud with discrete choice models and misclassified claims. Journal of Risk and Insurance, 69(3), 325-340.

Li, Y.,Popescu, M., Skubic, M., & Rantz, M. (2008, August). An acoustic fall detector system that uses sound height information to reduce the false alarm rate. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4628-4631). IEEE.

Allen, J., Forrest, S., Levi, M., Roy, H., Sutton, M., & Wilson, D. (2005). Fraud and technology Crimes: findings from the 2002/03 British Crime Survey and 2003.

Jyothsna, V. V. R. P. V., Prasad, R., & Prasad, K. M. (2011). A review of anomaly-based intrusion detection systems. International Journal of Computer Applications, 28(7), 26-35.

Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90-113.

Abdullah, M. S., Zainal, A., Maarof, M. A., & Kassim, M. N. (2018, November). Cyber-attack features for detecting cyber threat incidents from online news. In 2018 Cyber Resilience Conference (CRC) (pp. 1-4). IEEE.

Kowshalya, G., & Nandhini, M. (2018, April). Predicting fraudulent claims in automobile insurance. In 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 1338-1343). IEEE.

Schiller, J. (2006). The impact of insurance fraud detection systems. The Journal of Risk and Insurance, Vol.73, No.3, pp 421 – 438.

Al-Jumeily, D., Aljaaf, A. J., Hussain, A. J., Fergus, P., Al-Jumaily, M., & Abdel-Aziz, K. (2015, July). Toward an optimal use of artificial intelligence techniques within a clinical decision support system. In 2015 Science and Information Conference (SAI) (pp. 548-554). IEEE.

Téléchargements

Publié-e

16-06-2023