Estimation of Maximum Power from roof-integrated BIPV modules using Lambert W function aided three-diode model
Keywords:
building integrated photovoltaic (BIPV), three-diode model (TDM), maximum power, Lambert W functionAbstract
Building integrated photovoltaic (BIPV) modules refer to the modern solar photovoltaic (PV) modules that generate clean energy from buildings. A perfect BIPV module mathematical diode model represents the I-V and P-V characteristics of a BIPV module. The main objective of this research article is to estimate maximum power from roof-integrated BIPV modules through the proposed Lambert W function aided three diode model (TDM) approach. The nine unknown parameters (Iphc, Irs1, Irs2, Irs3, i1, i2, i3, Rp & Rs) for roof-integrated BIPV modules are extracted using this approach. Comparison of the proposed approach with datasheet simulated values for roof-integrated mono-crystalline BSO 300 Wp and multi-crystalline BSU 280 Wp BIPV modules in MATLAB/Simulink are performed. The proposed approach is further validated at different values of incident solar irradiations (Irr) and temperatures (T). Finally, it can be concluded that the Lambert W function aided TDM result nearly follows the I-V & P-V curves for both BSO 300Wp and BSU 280Wp BIPV modules for different values of incident solar irradiations (Irr) and temperatures (T) with an average error of 1.2%. This infers that the proposed method is a very robust and effective model for a BIPV module.
References
Cerón, I., Caamaño-Martín, E., Neila, F.J. (2013). ‘State-of-the-art’ of building integrated photovoltaic products. Renew. Energy. 58, 127–133. https://doi.org/https://doi.org/10.1016/j.renene.2013.02.013.
Ng, P.K., Mithraratne, N., Kua, H.W. (2013). Energy analysis of semi-transparent BIPV in Singapore buildings. Energy Build. 66, 274–281. https://doi.org/https://doi.org/10.1016/j.enbuild.2013.07.029.
Yang, R.J., Zou, P.X.W. (2016). Building integrated photovoltaics (BIPV): costs, benefits, risks, barriers and improvement strategy. Int. J. Constr. Manag. 16, 39–53. https://doi.org/10.1080/15623599.2015.1117709.
Shukla, A.K., Sudhakar, K., Baredar, P., Mamat, R. (2017). BIPV in Southeast Asian countries – opportunities and challenges. Renew. Energy Focus. 21, 25–32. https://doi.org/https://doi.org/10.1016/j.ref.2017.07.001.
Shukla, A.K., Sudhakar, K., Baredar, P. (2017). Recent advancement in BIPV product technologies: A review. Energy Build. 140, 188–195. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.02.015.
Osseweijer, F.J.W., van den Hurk, L.B.P., Teunissen, E.J.H.M., van Sark, W.G.J.H.M. (2018). A comparative review of building integrated photovoltaics ecosystems in selected European countries. Renew. Sustain. Energy Rev. 90, 1027–1040. https://doi.org/https://doi.org/10.1016/j.rser.2018.03.001.
Shukla, A.K., Sudhakar, K., Baredar, P., Mamat, R. (2018). BIPV based sustainable building in South Asian countries. Sol. Energy. 170, 1162–1170. https://doi.org/https://doi.org/10.1016/j.solener.2018.06.026.
Sarkar, D., Kumar, A., Sadhu, P.K. (2020). A Survey on Development and Recent Trends of Renewable Energy Generation from BIPV Systems. IETE Tech. Rev. 37, 258–280. https://doi.org/10.1080/02564602.2019.1598294.
Shongwe, S., Hanif, M. (2015). Comparative Analysis of Different Single-Diode PV Modeling Methods. IEEE J. Photovoltaics. 5, 938–946. https://doi.org/10.1109/JPHOTOV.2015.2395137.
Batzelis, E.I. (2017). Simple PV Performance Equations Theoretically Well Founded on the Single-Diode Model. IEEE J. Photovoltaics. 7, 1400–1409. https://doi.org/10.1109/JPHOTOV.2017.2711431.
Sarkar, D., Kumar, A., Sadhu, P.K. (2021). Different diode models comparison using Lambert W function for extracting maximum power from BIPV modules. Int. J. Energy Res. 45, 691–702. https://doi.org/https://doi.org/10.1002/er.5801.
Şentürk, A. (2018). New method for computing single diode model parameters of photovoltaic modules. Renew. Energy. 128, 30–36. https://doi.org/https://doi.org/10.1016/j.renene.2018.05.065.
Ruschel, C.S., Gasparin, F.P., Krenzinger, A. (2021): Experimental analysis of the single diode model parameters dependence on irradiance and temperature. Sol. Energy. 217, 134–144. https://doi.org/https://doi.org/10.1016/j.solener.2021.01.067.
Piliougine, M., Guejia-Burbano, R.A., Petrone, G., Sánchez-Pacheco, F.J., Mora-López, L., Sidrach-de-Cardona, M. (2021): Parameters extraction of single diode model for degraded photovoltaic modules. Renew. Energy. 164, 674–686. https://doi.org/https://doi.org/10.1016/j.renene.2020.09.035.
Ridha, H.M. (2020): Parameters extraction of single and double diodes photovoltaic models using Marine Predators Algorithm and Lambert W function. Sol. Energy. 209, 674–693. https://doi.org/https://doi.org/10.1016/j.solener.2020.09.047.
Ganesh Pardhu, B.S.S., Kota, V.R. (2021): Radial movement optimization based parameter extraction of double diode model of solar photovoltaic cell. Sol. Energy. 213, 312–327. https://doi.org/https://doi.org/10.1016/j.solener.2020.11.046.
Yahya-Khotbehsara, A., Shahhoseini, A. (2018): A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach. Sol. Energy. 162, 403–409. https://doi.org/https://doi.org/10.1016/j.solener.2018.01.047.
Khanna, V., Das, B.K., Bisht, D., Vandana, Singh, P.K. (2015): A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew. Energy. 78, 105–113. https://doi.org/https://doi.org/10.1016/j.renene.2014.12.072.
Qais, M.H., Hasanien, H.M., Alghuwainem, S. (2020): Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization. Energy. 195, 117040. https://doi.org/https://doi.org/10.1016/j.energy.2020.117040.
Ridha, H.M., Hizam, H., Gomes, C., Heidari, A.A., Chen, H., Ahmadipour, M., Muhsen, D.H., Alghrairi, M. (2021): Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method. Energy. 224, 120136. https://doi.org/https://doi.org/10.1016/j.energy.2021.120136.
Qais, M.H., Hasanien, H.M., Alghuwainem, S. (2019): Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm. Appl. Energy. 250, 109–117. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.05.013.
Qais, M.H., Hasanien, H.M., Alghuwainem, S., Nouh, A.S. (2019): Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. Energy. 187, 116001. https://doi.org/https://doi.org/10.1016/j.energy.2019.116001.
El-Hameed, M.A., Elkholy, M.M., El-Fergany, A.A. (2020): Three-diode model for characterization of industrial solar generating units using Manta-rays foraging optimizer: Analysis and validations. Energy Convers. Manag. 219, 113048. https://doi.org/https://doi.org/10.1016/j.enconman.2020.113048.
Allam, D., Yousri, D.A., Eteiba, M.B. (2016): Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm. Energy Convers. Manag. 123, 535–548. https://doi.org/https://doi.org/10.1016/j.enconman.2016.06.052.
Nassar-eddine, I., Obbadi, A., Errami, Y., El fajri, A., Agunaou, M. (2016): Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study. Energy Convers. Manag. 119, 37–48. https://doi.org/https://doi.org/10.1016/j.enconman.2016.04.030.
Tripathy, M., Kumar, M., Sadhu, P.K. (2017): Photovoltaic system using Lambert W function-based technique. Sol. Energy. 158, 432–439. https://doi.org/https://doi.org/10.1016/j.solener.2017.10.007.
Ćalasan, M., Abdel Aleem, S.H.E., Zobaa, A.F. (2020): On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 210, 112716. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112716.
El-Fergany, A.A. (2021): Parameters identification of PV model using improved slime mould optimizer and Lambert W-function. Energy Reports. 7, 875–887. https://doi.org/https://doi.org/10.1016/j.egyr.2021.01.093.
Batzelis, E.I., Routsolias, I.A., Papathanassiou, S.A. (2014): An Explicit PV String Model Based on the Lambert W Function and Simplified MPP Expressions for Operation Under Partial Shading. IEEE Trans. Sustain. Energy. 5, 301–312. https://doi.org/10.1109/TSTE.2013.2282168.
Pindado, S. et al. (2021) ‘Simplified Lambert W-Function Math Equations When Applied to Photovoltaic Systems Modeling’, IEEE Transactions on Industry Applications, 57(2), pp. 1779–1788. doi: 10.1109/TIA.2021.3052858.
Maruša Žlof, 2019, BISOL BIPV Series Monocrystalline Roof Integrated PV Modules / BSO 285-310 Wp, BISOL Group, https://elvirtus.hr/wp-content/uploads/2019/04/BISOL-Product-Specification-BSO_EN.pdf.
Maruša Žlof, 2019, BISOL BIPV Series Multicrystalline Roof Integrated PV Modules / BSU 270-280 Wp, BISOL Group, https://elvirtus.hr/wp-content/uploads/2019/04/BISOL-Product-Specification-BSU_EN.pdf.