Integrated Biomolecular Profiling and Mechanism Evaluation (IBProME) as an Explanatory Approach to Trabectedin's Anticancer Activity
DOI:
https://doi.org/10.48402/IMIST.PRSM/jasab-v7i2.58180Keywords:
Trabectedin, Cancer, Drug Mechanism, ABCB1 (P-glycoprotein), IBProMEAbstract
This article presents the Integrated Bioinformatics and Molecular Profiling for Drug Evaluation (IBProME) method, applied to analyze the anticancer activity of Trabectedin, a molecule derived from marine sources. Selected for clinical development due to its unique chemical structure and efficacy against various cancers, including soft tissue sarcomas and ovarian cancer, Trabectedin stands out for its distinct mechanism of action. It inhibits activated transcription, disrupting DNA repair and causing DNA double-strand breaks. This leads to the degradation of RNA polymerase II, a key enzyme for gene transcription. Notably, this process is especially effective in tumor cells deficient in DNA repair, such as those with mutations in the BRCA1 and BRCA2 genes. Additionally, Trabectedin impacts the tumor microenvironment by reducing mononuclear macrophages and inhibiting angiogenesis, which is crucial for the formation of new blood vessels. The IBProME approach integrates quantum chemistry, in silico toxicology, and molecular modeling techniques, enabling the prediction of Trabectedin's biological and toxicological effects prior to clinical trials. A key aspect of this study is the examination of the ABCB1 protein complex (P-glycoprotein, or MDR1), which plays a significant role in anticancer drug resistance. The structural data obtained provide valuable insights into the interactions between ABCB1 and inhibitors, offering a foundation for developing more targeted treatments against drug resistance.
References
Brodowicz, T. (2014). Trabectedin in soft tissue sarcomas. Future oncology, 10(8), s1-s5.
Povo-Retana, A., Landauro-Vera, R., Alvarez-Lucena, C., Cascante, M., Boscá, L. (2024). Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment—Progresses in Their Use in Combined Cancer Therapy. Molecules, 29(2), 331.
Ringwalt, E. M., Currier, M. A., Glaspell, A. M., Chen, C. Y., Cannon, M. V., Cam, M., Cripe, T. P. (2024). Trabectedin promotes oncolytic virus antitumor efficacy, viral gene expression, and immune effector function in models of bone sarcoma. Molecular Therapy Oncology, 32(4).
Rodrigues-Santos, P., Almeida, J. S., Sousa, L. M., Couceiro, P., Martinho, A., Rodrigues, J., Casanova, J. M. (2025). Immune monitoring of trabectedin therapy in refractory soft tissue sarcoma patients-the IMMUNYON study. Frontiers in Immunology, 16, 1516793.
Zielinski, R., Grela, K., Skora, S., Fokt, I., Baran, N., Priebe, W. (2025). Combining annamycin, a non-cardiotoxic potent topo II poison, with azacitidine, cytarabine, gemcitabine, ifosfamide, trabectedin, or vincristine to synergize anticancer effects and identify potential clinical applications. Cancer Research, 85(8), 1683-1683.
Rubio, M. J., Manzano, A., de Sande, L. M., Estévez-García, P., Gordon, M. D. M., de Prado, D. S., González-Martín, A. (2024). Retrospective multicenter study of elderly patients with platinum-sensitive relapsed ovarian cancer treated with trabectedin and pegylated liposomal doxorubicin (pld) in a real-world setting: a geico study. BMC cancer, 24(1), 803.
Tolstyka, Z. P., & Grohar, P. J. (2025). Exploiting divergent mechanisms of trabectedin for bone tumors. Molecular Therapy Oncology, 33(2).
Son, K., Takhaveev, V., Mor, V., Yu, H., Dillier, E., Zilio, N., Schärer, O. D. (2024). Trabectedin derails transcription-coupled nucleotide excision repair to induce DNA breaks in highly transcribed genes. Nature Communications, 15(1), 1388.
Watanabe, K., & Seki, N. (2024). Biology and development of DNA-targeted drugs, focusing on synthetic lethality, DNA repair, and epigenetic modifications for cancer: a review. International Journal of Molecular Sciences, 25(2), 752.
Gonzalo-Hansen, C., Steurer, B., Janssens, R. C., Zhou, D., van Sluis, M., Lans, H., Marteijn, J. A. (2024). Differential processing of RNA polymerase II at DNA damage correlates with transcription-coupled repair syndrome severity. Nucleic Acids Research, 52(16), 9596-9612.
Zhou, X. P., Xing, J. P., Sun, L. B., Tian, S. Q., Luo, R., Liu, W. H., Gao, S. H. (2024). Molecular characteristics and systemic treatment options of liposarcoma: A systematic review. Biomedicine & Pharmacotherapy, 178, 117204.
Craparotta, I., Mannarino, L., Zadro, R., Ballabio, S., Marchini, S., Pavesi, G., Frapolli, R. (2024). Mechanism of efficacy of trabectedin against myxoid liposarcoma entails detachment of the FUS-DDIT3 transcription factor from its DNA binding sites. Journal of Experimental & Clinical Cancer Research, 43(1), 309.
Kirishi, H., Yamane, H., Ochi, N., Sunada, Y., Mimura, A., Kosaka, Y., Takigawa, N. (2024). Four Cases with FUS/CHOP Fusion Gene Products Positive Myxoid Liposarcoma Responding Effectively to Trabectedin Monotherapy. OncoTargets and Therapy, 1059-1067.
Kokic, G., Yakoub, G., van den Heuvel, D., Wondergem, A. P., van der Meer, P. J., van der Weegen, Y., Luijsterburg, M. S. (2024). Structural basis for RNA polymerase II ubiquitylation and inactivation in transcription-coupled repair. Nature structural & molecular biology, 31(3), 536-547.
Kang, B., Lee, S. J., Seol, K. H., Jeong, Y. Y., Choi, J. H., Choi, B. H., Choi, Y. S. (2025). Trabectedin Induces Synthetic Lethality via the p53-Dependent Apoptotic Pathway in Ovarian Cancer Cells Without BRCA Mutations When Used in Combination with Niraparib. International Journal of Molecular Sciences, 26(7), 2921.
Boccia, S. M., Sassu, C. M., Ergasti, R., Vertechy, L., Apostol, A. I., Palluzzi, E., Marchetti, C. (2024). Focus on Trabectedin in Ovarian Cancer: What Do We Still Need to Know?. Drug Design, Development and Therapy, 2021-2032.
Schwarz, E., Savardekar, H., Zelinskas, S., Mouse, A., Lapurga, G., Lyberger, J., Carson III, W. E. (2025). Trabectedin enhances the antitumor effects of IL-12 in triple-negative breast cancer. Cancer immunology research, 13(4), 560-576.
Ainane, T., & Ainane, A. (2025). Integrated Biomolecular Profiling and Mechanism Evaluation (IBProME): A computational method for analyzing the biological properties and mechanisms of action of high-value molecules. Journal of Analytical Sciences and Applied Biotechnology, 7(1), 42-47.
Mohamed Abdoul-Latif, F., Ainane, A., Merito, A., Houmed Aboubaker, I., Mohamed, H., Cherroud, S., Ainane, T. (2024). The effects of khat chewing among Djiboutians: Dental chemical studies, gingival histopathological analyses and bioinformatics approaches. Bioengineering, 11(7), 716.
Banerjee, P., Ulker, O., Ozkan, I., Ulker, O. C. (2025). The investigation of the toxicity of organophosphorus flame retardants (OPFRs) by using in silico toxicity prediction platform ProTox-3.0. Toxicology Mechanisms and Methods, 35(1), 32-42.
Ishfaq, M., Halawa, M. I., Ahmad, A., Rasool, A., Manzoor, R., Ullah, K., Guan, Y. (2023). Generation of chemical space of compounds for prostate cancer treatment: biological activity prediction, clustering, and visualization of chemical space. ACS omega, 8(42), 39408-39419.
Mohamed Abdoul-Latif, F., Ainane, A., Achenani, L., Merito Ali, A., Mohamed, H., Ali, A., Ainane, T. (2024). Production of fucoxanthin from microalgae Isochrysis galbana of Djibouti: Optimization, correlation with antioxidant potential, and bioinformatics approaches. Marine Drugs, 22(8), 358.
Abdoul-Latif, F. M., Mohamed, H., Houmed Aboubaker, I., Saoudi, O., Ainane, A., Ali, A. M., Ainane, T. (2025). Cynthichlorine Extracted from Ascidian Cynthia savignyi from Djibouti: Optimization of Extraction, In Vitro Anticancer Profiling, and In Silico Approach. Marine Drugs, 23(4), 172.
Abdoul-Latif, F. M., El Mhamdi, M. I., Ainane, A., Ali, A. M., Oumaskour, K., Cherroud, S., Ainane, T. (2025). Development and Perfection of Marine-Based Insecticide Biofilm for Pea Seed Protection: Experimental and Computational Approaches. Molecules, 30(7), 1621.
Casagrande, N., Borghese, C., Corona, G., & Aldinucci, D. (2024). In ovarian cancer maraviroc potentiates the antitumoral activity and further inhibits the formation of a tumor-promoting microenvironment by trabectedin. Biomedicine & Pharmacotherapy, 172, 116296.
Wang, S., Wang, S. Q., Chen, X. B., Xu, Q., Deng, H., Teng, Q. X., Chen, F. E. (2024). Cell-Based Screen Identifies a Highly Potent and Orally Available ABCB1 Modulator for Treatment of Multidrug Resistance. Journal of Medicinal Chemistry, 67(21), 18764-18780.
Dhanyamraju, P. K. (2024). Drug resistance mechanisms in cancers: Execution of pro-survival strategies. Journal of biomedical research, 38(2), 95.
Wang, L., Liu, X., Lv, H., Zhang, H., Lin, R., Xu, S., Cui, N. (2025). Research Progress on Natural Products That Regulate miRNAs in the Treatment of Osteosarcoma. Biology, 14(1), 61.
Downloads
Published
Issue
Section
License
Some rights reserved 2025 Journal of Analytical Sciences and Applied Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Submission of a manuscript implies that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) and that it is not under consideration for publication elsewhere.
All works published by “Journal of Analytical Sciences and Applied Biotechnology” is under the terms of Creative Commons Attribution License. This permits anyone to copy, distribute, transmit and adapt the work provided the original work and source is appropriately cited.