On the universality of *good*, *bad*, *big*, and *small*:

Sandy Habib
Tel Hai College
Israel
mhsandy3@gmail.com

Abstract

The aim of this paper is to shed light on the universality of four concepts realized in English through the words *good*, *bad*, *big*, and *small*. It is argued that the universality of these concepts is attested by their having equivalents in all languages. Their having exact equivalents in all languages is demonstrated by previous research that identified these equivalents in 22 languages and by the current paper which investigates them in three more languages; Modern Standard Arabic, Jish Arabic, and Hebrew. This study indirectly contributes to the fields of intercultural communication, ethics, and foreign language learning.

Keywords: innate concepts; universal concepts; NSM; Semitic languages
1 Introduction

If any sane person is asked whether they can distinguish between what is good and what is bad or between what is big and what is small, most probably they will answer in the affirmative. If they are further asked why they think so, their response will highly likely be that this matter is intuitive and can be taken for granted. But scientists do not usually take anything for granted; they always look for a proof.

To prove that all people can distinguish between what is good and what is bad or between what is big and what is small, one can decided to carry out an experiment in which each person in the world is asked about what they think. It goes without saying that such an experiment is impossible as it requires linguists who know all the world languages (about 7,000 languages, a number of which have not been documented). What one can do instead is to test a number of people coming from as many different cultural and linguistic backgrounds as possible. If it is found that all these people can distinguish between the concepts in question, the findings can be generalized, stating that all people can do that.

This experiment, however, presupposes that all languages have exact equivalents of English good, bad, big, and small. Otherwise, one cannot be sure that the experimental efforts will pay off. But how can we ascertain the universality of these four concepts?

I would argue that the universality of any concept can be demonstrated by showing that these concepts have exact equivalents in as many genetically-different languages as possible. As will be discussed below, previous research has identified these equivalents in 22 languages, and the current paper will investigate them in three more languages.

2 Exact equivalents of good, bad, big, and small

Researchers have demonstrated that good, bad, big, and small have exponents (exact equivalents) in a variety of languages. In 1994, the exponents of these concepts were identified in Ewe, Mangap-Mbula, Mandarin, Thai, Acehnese, Kayardild, Yankuntjatjara, Misumalpan, Mparntwe Arremte, Longgu, Samoan, Japanese, Kalam, and French (Goddard and Wierzbicka, 1994). In 2002, the exponents of these concepts were identified in Malay, Spanish, Polish, and Lao (Goddard and Wierzbicka, 2002b); in 2006, in Portuguese and Italian (Peeters, 2006); and, in 2008, in Amharic (Goddard, 2008b).

Together with English, the languages in which the four target concepts were identified add up to 22 languages. Given that the estimated number of languages in the world stands at around 7,000, it may be thought that 22 is a minute number. Indeed it is; 22 out of 7,000 is only 0.3% (not three percent but three tenths percent!). However, these 22 languages belong to 10 major language families (see Table 1). As there are 135 major language families, this means that a sample from 7.4% of the major language families has been investigated.

It goes without saying that, the more the languages that are added to this list, the more solid becomes the claim that these four concepts are universal. In this paper, I will investigate the exponents of these concepts in three Semitic languages: Modern Standard (MS) Arabic, Jish Arabic, and Hebrew. I briefly introduce these three languages in Subsection 3.2

One may be tempted to think that identifying the exact equivalents of these concepts can be done by simply looking them up in the dictionaries of the target languages. That was not the case in all the previous studies mentioned above and is not the case in this study either. To explain why this is so, consider the concept of people (as will be shown in Subsection 3.1, it is one of 65 concepts that are believed to be universal). If we want to identify its exact equivalent in, say, Hebrew simply by looking it up in an English-Hebrew dictionary, we will find two equivalents, namely anashim and am.
Should we regard both as exact equivalents of English *people* or should we pick up only one of them? Unless we know English and Hebrew well, we will not pay attention to the fact that English *people* is polysemous, that is it is one word that has different but related meanings. Only one of these meanings is universal; all the others can be defined via the first. The meaning that is universal has its exact equivalent in Hebrew as *anashim* and not *am* (which means ‘a people’).

<table>
<thead>
<tr>
<th>No.</th>
<th>Major language family</th>
<th>Language family</th>
<th>Language investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Afro-Asiatic</td>
<td>Semitic</td>
<td>Amharic</td>
</tr>
<tr>
<td>2</td>
<td>Austronesian</td>
<td>Malayo-Polynesian</td>
<td>Acehnese; Longgu; Malay; Mangap-Mbula; Samoan</td>
</tr>
<tr>
<td>3</td>
<td>Indo-European</td>
<td>Germanic</td>
<td>English</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Romance</td>
<td>French; Italian; Portuguese; Spanish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slavic</td>
<td>Polish</td>
</tr>
<tr>
<td>4</td>
<td>Japonic</td>
<td>Japonic</td>
<td>Japanese</td>
</tr>
<tr>
<td>5</td>
<td>Kra-Dai</td>
<td>Tai</td>
<td>Lao; Thai</td>
</tr>
<tr>
<td>6</td>
<td>Macro-Chibchan</td>
<td>Macro-Chibchan</td>
<td>Misumalpan</td>
</tr>
<tr>
<td>7</td>
<td>Niger-Congo</td>
<td>Volta-Congo</td>
<td>Ewe</td>
</tr>
<tr>
<td>8</td>
<td>Pama-Nyungan</td>
<td>Arandic</td>
<td>Mparntwe Arrernte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tangkic</td>
<td>Kayardild</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wati</td>
<td>Yankunitjatjara</td>
</tr>
<tr>
<td>9</td>
<td>Sino-Tibetab</td>
<td>Sinitic</td>
<td>Mandarine</td>
</tr>
<tr>
<td>10</td>
<td>Trans-New Guinea</td>
<td>Madang</td>
<td>Kalam</td>
</tr>
</tbody>
</table>

In what follows, I will introduce the Natural Semantic Metalanguage (Subsection 3.1), the three Semitic languages I investigate in this paper (Subsection 3.2), criteria for the identification of exact equivalents (Subsection 3.3), and the exact equivalents of the four target concepts in the three languages (Subsection 3.4).

2.1 The Natural Semantic Metalanguage

The Natural Semantic Metalanguage, or NSM for short, is a semantic theory developed by Anna Wierzbicka, Cliff Goddard, and colleagues over a period of 50 years. The main tenet of NSM is that any complex concept can be explicated via a small set of simple, universal concepts. GOOD, BAD, BIG, and SMALL are four of these simple, universal concepts, which are known as *semantic primes*. The English exponents of these 65 semantic primes are presented in Table 2 below (note that semantic primes are always typed in SMALL CAPS):

The simplicity of the semantic primes is proven through trial and error. Put differently, to show that a certain concept defies definition, linguists need to try to decompose it. If they succeed in decomposing it via simpler concepts, then it is a complex concept; otherwise, it is simple.

The universality of the semantic primes have been proven through identifying their exponents (i.e. exact equivalents) in geographically and genetically different languages (Goddard, 2008a; Goddard and Wierzbicka, 1994, 2002a; Peeters, 2006).

Semantic primes have different realizations, called *allolexes*. An example of two allolexes are I vs. ME, with the first being used in subject position and the other in all other positions. The difference
Table 2: English exponents of semantic primes
(Goddard and Wierzbicka, 2014)

<table>
<thead>
<tr>
<th>English exponents</th>
<th>Semantic group</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, YOU, SOMEONE, SOMETHING THING, PEOPLE, BODY</td>
<td>Substantives</td>
</tr>
<tr>
<td>KIND, PART</td>
<td>Relational substantives</td>
</tr>
<tr>
<td>THIS, THE SAME, OTHER ELSE</td>
<td>Determiners</td>
</tr>
<tr>
<td>ONE, TWO, MUCH MANY, LITTLE FEW, SOME, ALL</td>
<td>Quantifiers</td>
</tr>
<tr>
<td>GOOD, BAD</td>
<td>Evaluators</td>
</tr>
<tr>
<td>BIG, SMALL</td>
<td>Descriptors</td>
</tr>
<tr>
<td>THINK, KNOW, WANT, DON’T WANT, FEEL, SEE, HEAR</td>
<td>Mental predicates</td>
</tr>
<tr>
<td>SAY, WORDS, TRUE</td>
<td>Speech</td>
</tr>
<tr>
<td>DO, HAPPEN,</td>
<td>Actions, events</td>
</tr>
<tr>
<td>MOVE, TOUCH</td>
<td>movement, contact</td>
</tr>
<tr>
<td>BE (SOMEWHERE), THERE IS,</td>
<td>Location, existence,</td>
</tr>
<tr>
<td>BE (SOMEONE/SOMETHING), BE (SOMEONE)’S</td>
<td>possession, specification</td>
</tr>
<tr>
<td>LIVE, DIE</td>
<td>Life and death</td>
</tr>
<tr>
<td>WHEN TIME, NOW, BEFORE, AFTER,</td>
<td>Time</td>
</tr>
<tr>
<td>A LONG TIME, A SHORT TIME, FOR SOME TIME, MOMENT</td>
<td>Space</td>
</tr>
<tr>
<td>WHERE PLACE, HERE, ABOVE,</td>
<td>Logical concepts</td>
</tr>
<tr>
<td>BELOW, FAR, NEAR, SIDE, INSIDE</td>
<td>Intensifier, Augmentor</td>
</tr>
<tr>
<td>NOT, MAYBE, CAN, BECAUSE, IF</td>
<td>Similarity</td>
</tr>
<tr>
<td>VERY, MORE</td>
<td></td>
</tr>
<tr>
<td>Like</td>
<td></td>
</tr>
</tbody>
</table>

between the two is syntactic and not semantic. Another example is THIS and THESE; the former combines with singular nouns and the latter with plural nouns. Thus we can speak of positional and combinatorial allolexes.

As has been mentioned, semantic primes have been identified in a number of languages. Not all of them, however, have been identified in Arabic and Hebrew—two Semitic languages. Habib (2019, 2020) identified the exponents of the substantives (I, YOU, SOMEONE, SOMETHING, PEOPLE, BODY), relational substantives (KIND, PART), determiners (THIS, THE SAME, OTHER), and quantifiers (ONE, TWO, SOME, MANY, FEW, ALL) in Modern Standard (MS) Arabic, Jish Arabic, and Hebrew. In this paper, I will identify the exponents of the evaluators GOOD and BAD, as well as the exponents of the descriptors BIG and SMALL, in these three languages. In the following subsection, I will briefly describe the three target languages.

2.2 Modern Standard (MS) Arabic, Jish Arabic, and Hebrew

Arabic is a case of a diglossic language (Aoun, Benmamoun, and Choueiri, 2010; Ferguson, 1959; Schiffman, 1997). It has two variants, High (H) and Low (L). The H variant is but one form, known as Modern Standard (MS) Arabic. This form is not spoken natively by anyone. It is normally acquired at school and is deployed in formal settings, such as educational institutes and courtrooms, and it is the language for writing.

The L variant consists of a vast number of forms, each is the mother tongue of a community of people residing in one spot in the Arab world. These forms are also known as the non-standard forms. Generally speaking, ordinary Arabs regard MS Arabic as a language and the non-standard forms as dialects of the same language. While some linguists may agree with this notion, because—so they
claim—the different dialects are mutually intelligible (Alsahafi, 2016), others may not agree. Their disagreement stems from the fact that the mutual intelligibility of any two given non-standard forms is a function of their geographical distance; the greater the distance, the less mutually intelligible are the forms, unless Arabic-speakers are exposed to them, say via the media (Ech-Charfi, 2019). This issue is outside the scope of this article, especially because distinguishing between language and dialect is “one of the most difficult theoretical issues in linguistics” (Crystal, 1997, p. 25).

In this paper, I will investigate, besides MS Arabic and Hebrew, a non standard form spoken natively by the residents of Jish. Jish is a small town in the north of Israel, close to the Israeli-Lebanese borders. It has a population of approximately 3,000 people, most of whom speak Jish Arabic natively (the rest are women from other towns who married men from Jish). Like all non-standard Arabic forms, the use of Jish Arabic in writing is restricted to text messaging, some local posters, and the like (cf. Habib and Kurzon, 2008).

Like Arabic, Hebrew is a Semitic language. Unlike Arabic, it is not diglossic and is spoken natively by a small number of people (about 6.5 million have Hebrew as their mother tongue while about half a billion have one of the Arabic L forms as their mother tongue). Modern Hebrew is a hybrid language, with Biblical Hebrew and Yiddish being its parents; this made Zuckermann prefer calling it Israeli (Zuckermann, 2004, 2005, 2009).

2.3 Criteria for identifying semantic prime exponents

In identifying the Hebrew and Arabic exponents of GOOD, BAD, BIG, and SMALL, I will rely on the guidelines which are used by Habib (2019, pp. 192–193) and which I reproduce here:

1. In a given language, if (a) there appears to be only one candidate for a certain semantic prime, and (b) this candidate satisfies all the combinatorial frames\(^2\) of the semantic prime, then this candidate is to be regarded as the exponent of this semantic prime.

2. If (a) there appear to be two or more candidates for a certain semantic prime, but (b) only one of them satisfies all the combinatorial frames of the semantic prime, then only this candidate is to be regarded as the exponent of this semantic prime.

3. If (a) there appear to be two or more candidates for a certain semantic prime, and (b) all of them satisfy all the combinatorial frames of the semantic prime, but (c) only one of them seems to be semantically simpler than all the others, then only this candidate is to be regarded as the exponent of the semantic prime.

4. If (a) there appear to be two or more candidates for a certain semantic prime, and (b) all of them satisfy all the combinatorial frames of the semantic prime, and (c) there does not appear to be any semantic difference between them, but (d) one of them is much more frequent than all the others, then only this candidate is to be regarded as the exponent of the semantic prime\(^3\).

5. If (a) there appear to be two or more candidates for a certain semantic prime, and (b) all of them satisfy all the combinatorial frames of the semantic prime, and (c) there does not appear to be any semantic difference between them, and (d) they are not (much) different in their frequency, then all of them are to be regarded as allolexes of the exponent of the semantic prime.

\(^2\) A combinatorial frame (also called ‘canonical construction’) is a sentence that is simple and universal. It cannot be simplified further, and it has exact equivalents in all languages.

\(^3\) Like Habib (2018), I will use corpus analysis to check frequency. To check frequency in MS Arabic, I will use the ArabiCorpus (150+ million words), and, for Hebrew, I will use HebrewCorpus (170+ million words).
2.4 Evaluators and descriptors

2.4.1 GOOD and BAD

GOOD and BAD are two primes that are used in explications (simple definitions) to portray the natures (i.e. goodness or badness) of entities, actions, and places. Consider, for instance, the explications of English angels and the devil where the semantic primes GOOD and BAD, respectively, play a pivotal role (Habib, 2011, 2012, 2017). In addition, these two primes appear to be necessary to describe people and their fate in the afterlife (Habib, 2018), as it is believed that good people go to a good place (such as heaven) where they find their ultimate happiness and bad people go to a bad place (like hell) in which they suffer.

Like their English counterparts, the exponents of GOOD and BAD in Arabic and Hebrew can be used attributively (as in ‘this is a good thing’), predicatively (as in ‘this is good’), and with valency options. Experiencers following these exponents, such as in ‘it is good for you,’ are prefixed by the preposition l- in Arabic and Hebrew.

MS Arabic: JAYYID and SAYYIʾ. The exponents of GOOD and BAD in MS Arabic are straightforward and do not pose any problem. They are lexicalized as the adjectives JAYYID and SAYYIʾ, respectively. When used attributively, they follow the nouns they modify and agree with them in case, number, gender, and definiteness, resulting in the following combinatorial allolexes:

<table>
<thead>
<tr>
<th>GOOD</th>
<th>BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG.F JAYYIDA</td>
<td>SAYYIʾA</td>
</tr>
<tr>
<td>NOM.DU.M JAYYIDĀN</td>
<td>SAYYIʾĀN</td>
</tr>
<tr>
<td>NOM.DU.F JAYYIDATĀN</td>
<td>SAYYIʾATĀN</td>
</tr>
<tr>
<td>NOM.PL.M JAYYIDŪN</td>
<td>SAYYIʾŪN</td>
</tr>
<tr>
<td>PL.F JAYYIDĀT</td>
<td>SAYYIʾĀT</td>
</tr>
</tbody>
</table>

The following example shows the attributive use of the two exponents:

(1) u-nās-u-n jayyid-ūn / sayyiʾ-ūn.
 INDF-people-NOM good-NOM.PL.M / bad-NOM.PL.M
 ‘good/bad people’

One may wonder whether the MS Arabic khayr ‘goodness’ and sharr ‘evil’ should be regarded as primitive, too. My response is in the negative. First, these two words are nouns and, therefore, do not satisfy the combinatorial frames of GOOD and BAD. Second, like English evil, Arabic sharr is more complex than bad. The definition of evil and sharr involve the phrase ‘very bad.’

Jish Arabic: MNĪḤ and MISH MNĪḤ. The primary exponent of GOOD in Jish Arabic is MNĪḤ. The combinatorial allolexes of this exponent include MNĪḤA [good-SG.F] and MNĀḤ [good(PL)]. Like its MS Arabic counterpart, MNĪḤ occurs after the noun it modifies and agrees with it in gender (only when the noun is in the singular) and definiteness. Here is an example:

(2) nās mnīḥ
 people good(PL)
 ‘good people’

Jish Arabic does not have one word for BAD; instead, it uses the collocation mish mnīḥ, which literally means ‘not good.’ This combination is polysemous as it can mean either ‘not good’ or ‘bad.’ That it
means ‘bad’ is evident from the fact that it can be modified by the intensifier ktīr ‘very,’ as shown in example (3):

(3) nās ktīr mish mnāḥ
people very not good(PL)
‘very bad people’

This is reminiscent of Chinese, where the combination BÙ HǍO (lit. ‘not good’) is proposed as an exponent of the semantic prime BAD on the grounds that it is combinable with the intensifier hěn VERY (Chappell, 2002). The difference between Chinese and Jish Arabic is that the former, but not the latter, has a word for bad, viz. huài, which is also proposed as an exponent of the prime BAD.

Two comments are in order. First, while Chappell (2002) proposes two exponents for the semantic prime bad, huài and bù hǎo, she does not clearly state whether one is to be regarded as an allolex of the other. Second, I should observe that the Jish Arabic exponent of BAD, as well as Chinese bù hǎo, can be problematic because they cannot be used in a structure such as ‘it isn’t not good, it is bad’ (meaning, not only is it not good, but it is also bad). This problem has not been dealt with before, and it requires further investigation.

Hebrew: TOV and RA. GOOD is realized in Hebrew as TOV. Akin to other adjectives in Hebrew, TOV follows the noun it modifies and inflects for gender, number, and definiteness; thus its combinatorial allolexes are TOVA [good-SG.F], TOVIM [good-PL.M], and TOVOT [good-PL.F]. The following example is illustrative:

(4) anashim tov-im
people good-PL
‘good people’

Regarding the semantic prime BAD, it is lexicalized in Modern Hebrew as RA. Like other Hebrew adjectives, RA has the usual combinatorial allolexes for gender and number: RA‘A [bad-SG.F], RA‘IM [bad-PL.M], and RA‘OT [bad PL.F]. Here is an example:

(5) anashim ra-im
people bad-PL.M
‘bad people’

I should note that there is another Hebrew candidate for BAD, and it is garuwa. In HebrewCorpus, ra appears 48,755 times, whilst garuwa occurs 10,541 times, which means that ra is about 2.3 times more frequent than garuwa. In addition, unlike English bad, garuwa cannot be used in a moral sense. Myhill (1996, p. 109) remarks that “a morally deficient person can be described as bad but not as garua’. On this basis, garuwa is not to be considered an exponent of the semantic prime. I should also note that the combination me‘ad lo tov ‘very not good’ is possible in Hebrew; in fact, this combination appears 47 times in HebrewCorpus. This suggests that lo tov ‘not good’ is polysemous and has two meanings, not good and bad. There does not seem to be any semantic difference between lo tov and ra. However, as the former is much less frequent than the latter, I will not regard it as an exponent of the semantic prime.

2.4.2 BIG and SMALL

While the English words big and small and their near equivalents in other languages can be used to denote physical as well as non-physical bigness and smallness, the semantic primes BIG and SMALL are used to refer to physical size only. These two primes are used mainly as attributes; whether or not they can be used predicatively is a matter which needs further investigation.
The two primes have proven to be essential in any explication which involves describing the physical properties of a certain entity, especially when comparing them to those of human beings (Goddard, 2011; Wierzbicka, 1985).

MS Arabic: KABĪR and ṢAGHĪR. The exponents BIG and SMALL are KABĪR and ṢAGHĪR, respectively. They agree with the nouns they modify in definiteness, gender, number, and case. Their various combinatorial allolexes are presented in Table 4 below:

<table>
<thead>
<tr>
<th></th>
<th>BIG</th>
<th>SMALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG.F</td>
<td>KABĪRA</td>
<td>ṢAGHĪRA</td>
</tr>
<tr>
<td>NOM.DU.M</td>
<td>KABĪRĀN</td>
<td>ṢAGHĪRĀN</td>
</tr>
<tr>
<td>NOM.DU.F</td>
<td>KABĪRATĀN</td>
<td>ṢAGHĪRATĀN</td>
</tr>
<tr>
<td>NOM(PL.M)</td>
<td>KIBĀR</td>
<td>ŠIGHĀR</td>
</tr>
<tr>
<td>PL.F</td>
<td>KABĪRĀT</td>
<td>ṢAGHĪRĀT</td>
</tr>
</tbody>
</table>

And here is an example that shows the use of these two primes in a canonical construction:

(6) u-nās-u-n kibār-u-n ṣighār-u-n
 INDF-people-NOM-INDF big(PL.M)-NOM-INDF small(PL.M)-NOM-INDF
 ‘big/small people’

Jish Arabic: KBĪR and ZGHĪR. BIG and SMALL are realized in Jish Arabic as KBĪR and ZGHĪR, respectively. Their combinatorial allolexes include KBĪRI [big-SG.F] and ZGHĪRI [small-SG.F] as well as KBĀR [big(PL)] and ZGHĀR [big(PL)]. The exponents and their allolexes agree in definiteness with the nouns they modify. Example (7) is representative:

(7) nās kbār / zghār
 people big(PL) / small(PL)
 ‘big/small people’

Hebrew: GADOL and KATAN. As in Arabic, identifying the exponents of BIG and SMALL in Hebrew does not raise any particular problem. The exponents of these two semantic primes are GADOL and KATAN, respectively. These two exponents inflect for gender, number, and definiteness, resulting in the following combinatorial allolexes: GDOLA [big-SG.F] and KTANA [small-SG.F], GDOLIM [big-PL.M] and KTANIM [small-PL.M], GDOLOT [big-PL.F] and KTANOT [small-PL.F]. Here is an example:

(8) anashim gdol-im / ktan-im
 people big-PL.M / small-PL.M
 ‘big/small people’

3 So what if they are universal?

The universality of the four target concepts can be significant to a number of fields. First, consider the field of intercultural communication. It goes without saying that many concepts are culture- and language-specific, and because of that, they do not have equivalents in other languages and cannot be translated into those languages. Being aware of which concepts are universal and which ones are language-specific, can enhance cross-cultural communication.

In addition, there is the field of ethics. Many researchers argue in favor of the innateness of the “moral sense.” To give but one example, in his book *The God Delusion*, Dawkins states that “we have a moral
sense which is built into our brains, like our sexual instinct or our fear of heights” (Dawkins, 2006, p. 214). This claim cannot be verified unless one conducts a study or a series of studies that examine what people in different unrelated cultures think. Such a study would revolve around the equivalents of English *moral* in the languages employed by those cultures. But the English words *moral* and *immoral* do not have exact equivalents in many languages, such as Jish Arabic and Chinese. On the other hand, all languages have the concepts of *good* and *bad*, and, in all of them, one can say the exact equivalent of “people can do good things” and “people can do bad things” (Wierzbicka, 2007, p. 68).

Finally, there is the field of foreign language learning. The target concepts are four out of 65 semantic primes, which are simple, universal meanings, and, identifying their exponents in any language can serve the needs of foreign language learners. These meanings should be among the first meanings to be introduced and taught to the learner.

4 Conclusion

This paper has argued in favor of the universality of four concepts—*good, bad, big,* and *small*—through arguing that they have exponents in all languages. Evidence from the literature has been presented to corroborate this argument. It has been pointed out that NSM researchers identified these exponents in a variety of genetically-diverse languages, but not in Arabic or Hebrew. The contribution of this paper lies in adding three Semitic languages—MS Arabic, Jish Arabic, and Hebrew—to the list of languages in which the exponents of the four target concepts have been identified, thus giving additional support to the NSM claim.

References

