Evaluating the Usability and Variability of Data on Transport for Modelling
=A Case Study of Dar Es Salaam, Tanzania
DOI:
https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v8i4.52650Abstract
Background and context
Modelling transport demand is a vital tool in urban planning, facilitating the prediction of future travel demand and guiding the development of infrastructure and policy decisions.
Goals and objectives
The study aimed at assessing the availability and utilization of data during transport planning processes. The findings and recommendations focus on improvements that would not only make data more accessible and useful for transport modelling but also facilitate more informed decision-making and policy formulation in Tanzania. Furthermore, the findings could have broader implications for other African cities facing similar data challenges, helping to advance data-driven approaches to transport planning across the continent. The objectives of the study are i) to identify gaps on the availability and utilization of modelling data during transport planning; ii) to determine and assess the main sources transport data and information that could lead to recommendations for better data collection, integration, and documentation practices.
Methods
The case study approach was adopted and Dar es Salaam City was selected as the case study area. The surveys were conducted in main transport institutions such as TARURA, TANROADS, DART, Ministry of Transport and Ministry of Lands and Human Settlements Development, and official interviews conducted to government officials to determine the available data, and the level of utilization of data in urban planning processes. Data analysis were conducted using statistical methods.
Results
The results showed that, for trip generation, the frequency variable had a mean of 3.1 (SD = 3.05), and the percentage variable had a mean of 21.9 (SD = 21.8). The dataset exhibited a high skewness (2.46) and a kurtosis of 6.51, indicating the presence of outliers. PCA results revealed that the first principal component (PC 1) explained 100% of the variance, with variables like "Traffic Data" and "GDP" showing strong negative scores of -14.94, while "Household Survey (2017)" and "Paved Roads" had positive scores of 21.12 and 57.18, respectively. The findings highlight substantial variability in data, with traffic counts and road conditions being the most influential factors in modelling. The significant skewness and kurtosis suggested a need for data normalization to reduce the impact of outliers.
References
Abdi, A., & Amrit, C. (2021). A review of travel and arrival-time prediction methods on road networks: classification, challenges and opportunities. PeerJ Computer Science, 7, e689. https://doi.org/10.7717/peerj-cs.689
Abdullah, M., Ali, N., Shah, S. A. H., Javid, M. A., & Campisi, T. (2021). Service quality assessment of app-based demand-responsive public transit services in Lahore, Pakistan. Applied Sciences, 11(4), 1911. https://doi.org/10.3390/app11041911
Afrin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability, 12(11), 4660. https://doi.org/10.3390/su12114660
Agyemang, E., Anderson, B., Patiño, J., & Tremolieres, M. (2024). Toward achieving smart cities in Africa: challenges to data use and the way forward. Data & Policy, 6, e13. https://doi.org/10.1017/dap.2024.11
Ahmed, S., & Dey, K. (2020). Resilience modelling concepts in transportation systems: a comprehensive review based on mode, and modelling techniques. Journal of Infrastructure Preservation and Resilience, 1, 1-20. https://doi.org/10.1186/s43065-020-00008-9
Albuquerque-Oliveira, J. L., Oliveira-Neto, F. M., & Pereira, R. H. (2024). A novel route-based accessibility measure and its association with transit ridership. Transportation Research Part A: Policy and Practice, 179, 103916. https://doi.org/10.1016/j.tra.2023.103916
Alexander, W. E. (2024). Bridging the gap: unifying transportation planning and operations through enhanced travel demand modeling (US: The University of Texas at Austin, Doctoral dissertation). https://doi.org/10.26153/tsw/52593
Ali, A. H., Kineber, A. F., Elyamany, A., Ibrahim, A. H., & Daoud, A. O. (2023). Modelling the role of modular construction's critical success factors in the overall sustainable success of Egyptian housing projects. Journal of Building Engineering, 71, 106467. https://doi.org/10.1016/j.jobe.2023.106467
Alkaraan, F., Elmarzouky, M., Hussainey, K., & Venkatesh, V. G. (2023). Sustainable strategic investment decision-making practices in UK companies: The influence of governance mechanisms on synergy between industry 4.0 and circular economy. Technological Forecasting and Social Change, 187, 122187. https://doi.org/10.1016/j.techfore.2022.122187
Andrew K. F., Mkuna, E., Sesabo, J. K., & Lihawa, R. M. (2024). The dynamics of natural population increase and urbanization in East Africa: Heterogeneous panel data analysis 1960–2020. Journal of Asian and African Studies, 00219096241235301. https://doi.org/10.1177/00219096241235301
Auwalu, F. K., & Bello, M. (2023). Exploring the contemporary challenges of urbanization and the role of sustainable urban development: a study of Lagos City, Nigeria. Journal of Contemporary Urban Affairs, 7(1), 175-188. https://doi.org/10.25034/ijcua.2023.v7n1-12
Azimian, A., & Azimian, A. (2024). Impact of areal factors on students’ travel mode choices: A Bayesian spatial analysis. Econometrics, 12(4), 30. https://doi.org/10.3390/econometrics12040030
Bagheri, F., Soltani, A., Hamidi, S., & Azizi, P. (2024). Transportation research interdisciplinary perspectives. Transportation Research Interdisciplinary Perspectives, 27, 101237. https://doi.org/10.1016/j.trip.2024.101237
Bąk, M., Borkowski, P., & Suchanek, M. (2024). Effect of beliefs and attitudes on public transport users’ choices. The moderating role of perceived intermodal connectivity. Transport Policy, 159, 120-129. https://doi.org/10.1016/j.tranpol.2024.10.003
Bandpey, Z., & Shokouhian, M. (2024). Investigating transportation equity in maryland: An AI-based approach. In International Conference on Transportation and Development 2024 (pp. 103-115). https://doi.org/10.1061/9780784485521.010
Barman, P., & Dutta, L. (2024). Charging infrastructure planning for transportation electrification in India: A review. Renewable and Sustainable Energy Reviews, 192, 114265. https://doi.org/10.1016/j.rser.2023.114265
Bencekri, M., Van Fan, Y., Lee, D., Choi, M., & Lee, S. (2024). Optimizing shared bike systems for economic gain: Integrating land use and retail. Journal of Transport Geography, 118, 103920. https://doi.org/10.1016/j.jtrangeo.2024.103920
Berkes, A., & Keshav, S. (2024). SPAGHETTI: a synthetic data generator for post-Covid electric vehicle usage. Energy Informatics, 7(1), 15. https://doi.org/10.1186/s42162-024-00314-6
Berrill, P., Nachtigall, F., Javaid, A., Milojevic-Dupont, N., Wagner, F., & Creutzig, F. (2024). Comparing urban form influences on travel distance, car ownership, and mode choice. Transportation research part D: transport and environment, 128, 104087. https://doi.org/10.1016/j.trd.2024.104087
Bigi, F., Rashidi, T. H., & Viti, F. (2024). Synthetic population: A reliable framework for analysis for agent-based modeling in mobility. Transportation Research Record, 03611981241239656. https://doi.org/10.1177/03611981241239656
Boukerche, A., & Wang, J. (2020). Machine learning-based traffic prediction models for intelligent transportation systems. Computer Networks, 181, 107530. https://doi.org/10.1016/j.comnet.2020.107530
Bree, S., Fuller, D., & Diab, E. (2020). Access to transit? Validating local transit accessibility measures using transit ridership. Transportation Research Part A: Policy and Practice, 141, 430-442. https://doi.org/10.1016/j.tra.2020.09.019
Brenman, M., & Sanchez, T.W. (2023). Car Ownership. In: Maggino, F. (eds) Encyclopedia of quality of life and well-being research. Springer, Cham. https://doi.org/10.1007/978-3-031-17299-1_268
Büchel, B., & Corman, F. (2020). Review on statistical modelling of travel time variability for road-based public transport. Frontiers in Built Environment, 6, 70. https://doi.org/10.3389/fbuil.2020.00070
Burns, K. (2023). Active transportation demand model for decision-making in Fredericton.
University of New Brunswick, thesis. https://unbscholar.lib.unb.ca/handle/1882/37509
Bwambale, A., Choudhury, C. F., & Sanko, N. (2019). Car trip generation models in the developing world: Data issues and spatial transferability. Transportation in Developing Economies, 5, 1-15. https://doi.org/10.1007/s40890-019-0075-7
Bwire, H. (2020). Determinants of children's school travel mode use in Dar es Salaam. International Journal for Traffic & Transport Engineering, 10(3). http://dx.doi.org/10.7708/ijtte.2020.10(3).09
Cai, T., & Hong, Z. (2024). Exploring the structure of the digital economy through blockchain technology and mitigating adverse environmental effects with the aid of artificial neural networks. Frontiers in Environmental Science, 12, 1315812. https://doi.org/10.3389/fenvs.2024.1315812
Chowdhury, V., Mitra, S. K., & Hernandez, S. (2024). Electric vehicle usage patterns in multi-vehicle households in the US: a machine learning study. Sustainability, 16(12), 5200. https://doi.org/10.3390/su16125200
Cong, W., Zhou, J., & Lai, Y. (2024). The coordination between citywide rail transit accessibility and land-use characteristics in Shenzhen, China: An explorative analysis based on multidimensional spatial data. Sustainable Cities and Society, 113, 105691. https://doi.org/10.1016/j.scs.2024.105691
Correa, D., & Ozbay, K. (2024). Urban path travel time estimation using GPS trajectories from high-sampling-rate ridesourcing services. Journal of Intelligent Transportation Systems, 28(2), 267-282. https://doi.org/10.1080/15472450.2022.2124867
Coughlan, L. M. (2024). Sustainable urban tourism in African cities. In Handbook on Sustainable Urban Tourism (pp. 456-470). Edward Elgar Publishing. https://doi.org/10.4337/9781803926742.00044
Croce, A. I., Musolino, G., Rindone, C., & Vitetta, A. (2020). Estimation of travel demand models with limited information: Floating car data for parameters’ calibration. Sustainability, 13(16), 8838. https://doi.org/10.3390/su13168838
Diderot, C. D., Bernice, N. W. A., Tchappi, I., Mualla, Y., Najjar, A., & Galland, S. (2023). Intelligent transportation systems in developing countries: Challenges and prospects. Procedia Computer Science, 224, 215-222. https://doi.org/10.1016/j.procs.2023.09.030
Díez-Gutiérrez, M., Babri, S., Dahl, E., & Malmin, O. K. (2024). Georeferenced X (formerly twitter) data as a proxy of mobility behaviour: case study of Norway. European Transport Research Review, 16(1), 49. https://doi.org/10.1186/s12544-024-00675-9
Droj, G., Droj, L., & Badea, A. C. (2022). GIS-based survey over the public transport strategy: An instrument for economic and sustainable urban traffic planning. ISPRS International Journal of Geo-Information, 11(1), 16. https://doi.org/10.3390/ijgi11010016
Duan, H., Li, J., & Yuan, Z. (2024). Making waves: Knowledge and data fusion in urban water modelling. Water Research X, 24, 100234. https://doi.org/10.1016/j.wroa.2024.100234
Duri, B., & Luke, R. (2022). Transport barriers encountered by people with disability in Africa: An overview. Journal of Transport and Supply Chain Management 16, a826. https://doi.org/10.4102/jtscm.v16i0.826
Feng, F., Anastasopoulos, P. C., Guo, Y., Wang, W., Peeta, S., & Li, X. (2024). Willingness to use ridesplitting services for home-to-work morning commute in the post-COVID-19 era. Transportation, 1-34. https://doi.org/10.1007/s11116-024-10549-7
Filippi, F. (2024). Visions, paradigms, and anomalies of urban transport. Future Transportation, 4(3), 938-967. https://doi.org/10.3390/futuretransp4030045
Florido-Benítez, L. (2024). Increasing security levels in the tourism and air-transport industries could enhance African people’s quality of life and tourism demand. Tourism and Hospitality, 5(3), 713-735. https://doi.org/10.3390/tourhosp5030042
Fu, X., Liu, X., & Li, Z. (2024). Traveling with children: Chinese parents’ parenting-leisure conflicts and resolution behaviors. Journal of Travel & Tourism Marketing, 41(6), 811-827. https://doi.org/10.1080/10548408.2024.2349303
Gaxiola-Beltrán, A. L., Narezo-Balzaretti, J., Ramírez-Moreno, M. A., Pérez-Henríquez, B. L., Ramírez-Mendoza, R. A., Krajzewicz, D., & Lozoya-Santos, J. D. J. (2021). Assessing urban accessibility in monterrey, Mexico: A transferable approach to evaluate access to main destinations at the metropolitan and local levels. Applied sciences, 11(16), 7519. https://doi.org/10.3390/app11167519
Gelb, J., Apparicio, P., & Alizadeh, H. (2024). A synthetic vulnerable population dataset for fine scale geographical equity analysis and urban planning. Scientific Data, 11(1), 954. https://doi.org/10.1038/s41597-024-03771-6
Githaiga, N. (2024). Tracks of Change?: Unpacking the population, migration and crime impacts of Kenya’s standard gauge railway. Open Journal of Social Sciences, 12(10), 1-13. https://doi.org/10.4236/jss.2024.1210001
Golob, T. F., Horowitz, A. D., & Wachs, M. (2021). Attitude-behaviour relationships in travel-demand modelling. In Behavioural travel modelling (pp. 739-757). Routledge. Taylor & Francis, UK.
Grzenda, M., Luckner, M., Zawieska, J., & Wrona, P. (2024). Combining data from multiple sources for urban travel mode choice modelling. arXiv preprint arXiv:2407.12137.
https://doi.org/10.48550/arXiv.2407.12137
Haery, S., Mahpour, A., & Vafaeinejad, A. (2024). Forecasting urban travel demand with geo-AI: a combination of GIS and machine learning techniques utilizing uber data in New York City. Environmental Earth Sciences, 83(20), 594. https://doi.org/10.1007/s12665-024-11900-y
Hamurcu, M., & Eren, T. (2020). Strategic planning based on sustainability for urban transportation: An application to decision-making. Sustainability, 12(9), 3589. https://doi.org/10.3390/su12093589
Harrison, G., Grant-Muller, S. M., & Hodgson, F. C. (2020). New and emerging data forms in transportation planning and policy: Opportunities and challenges for “Track and Trace” data. Transportation Research Part C: Emerging Technologies, 117, 102672. https://doi.org/10.1016/j.trc.2020.102672
Haseli, G., Deveci, M., Isik, M., Gokasar, I., Pamucar, D., & Hajiaghaei-Keshteli, M. (2024). Providing climate change resilient land-use transport projects with green finance using Z extended numbers based decision-making model. Expert Systems with Applications, 243, 122858. https://doi.org/10.1016/j.eswa.2023.122858
Haule, K., & Kabigi, B. (2024). Land Market and the “Sendoff” of Peri-Urban Agriculture in Tanzania: An Evolutionary Analysis of Practices and Actors. Ghana Journal of Geography, 16(3), 12-23. https://doi.org/10.4314/gjg.v16i3.2
Hayes, G. P., & Venter, C. A (2024). Self-Validating method to collect motorist route choice behavioural data using a smartphone application. http://dx.doi.org/10.2139/ssrn.4714648
Hörcher, D., & Tirachini, A. (2021). A review of public transport economics. Economics of Transportation, 25, 100196. https://doi.org/10.1016/j.ecotra.2021.100196
Hu, S., Xiong, C., Chen, P., & Schonfeld, P. (2023). Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models. Transportation Research Part A: Policy and Practice, 174, 103743. https://doi.org/10.1016/j.tra.2023.103743
Huang, Y., Gao, L., Ni, A., & Liu, X. (2021). Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China. Journal of transport geography, 93, 103070. https://doi.org/10.1016/j.jtrangeo.2021.103070
Hull, C., Collett, K. A., & McCulloch, M. D. (2024). Developing a representative driving cycle for paratransit that reflects measured data transients: Case study in Stellenbosch, South Africa. Transportation Research Part A: Policy and Practice, 181, 103987. https://doi.org/10.1016/j.tra.2024.103987
Iliashenko, O., Iliashenko, V., & Lukyanchenko, E. (2021). Big data in transport modelling and planning. Transportation Research Procedia, 54, 900-908. https://doi.org/10.1016/j.trpro.2021.02.145
Ilojianya, V. I., Usman, F. O., Ibekwe, K. I., Nwokediegwu, Z. Q. S., Umoh, A. A., & Adefemi, A. (2024). Data-driven energy management: review of practices in Canada, USA, and Africa. Engineering Science & Technology Journal, 5(1), 219-230. https://doi.org/10.51594/estj.v5i1.745
Jafari, A., Pemberton, S., Singh, D., Saghapour, T., Both, A., Gunn, L., & Giles-Corti, B. (2024). Understanding the impact of city-wide cycling corridors on cycling mode share among different demographic clusters in Greater Melbourne, Australia. Research Square. https://doi.org/10.21203/rs.3.rs-4538181/v1
Jaramillo, P., Kahn Ribeiro, S., Newman, P., Dhar, S., Diemuodeke, O. E., Kajino, T., ... & Whitehead, J. (2022). Transport, 1049-1160 Cambridge, UK and New York, NY, USA: Cambridge University Press.. 10.1017/9781009157926.012.
Jiang, S., Ma, H., Yang, L., & Luo, S. (2023). The influence of perceived physical and aesthetic quality of rural settlements on tourists’ preferences—A case study of Zhaoxing Dong village. Land, 12(8), 1542. https://doi.org/10.3390/land12081542
Jones, S., Tefe, M., Zephaniah, S., Tedla, E., Appiah-Opoku, S., & Walsh, J. (2016). Public transport and health outcomes in rural sub-Saharan Africa – A synthesis of professional opinion. Journal of Transport & Health, 3(2), 211-219. https://doi.org/10.1016/j.jth.2015.12.005
Kar, A.K. (2021). What affects usage satisfaction in mobile payments? Modelling user generated content to develop the “Digital Service Usage Satisfaction Model”. Infrastructure Systems Frontiers, 23, 1341–1361. https://doi.org/10.1007/s10796-020-10045-0
Karami, Z., & Kashef, R. (2020). Smart transportation planning: Data, models, and algorithms. Transportation Engineering, 2, 100013. https://doi.org/10.1016/j.treng.2020.100013
Kayikci, Y., Subramanian, N., & Kuppusamy, S. (2024). Exploring digitalisation, resilience, and sustainability challenges in the cargo transportation and logistics industry through topic modelling and empirical evidence in the aftermath of COVID-19. IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2024.3433368
Kebede, E. A., Abou Ali, H., Clavelle, T., Froehlich, H. E., Gephart, J. A., Hartman, S., ... & Davis, K. F. (2024). Assessing and addressing the global state of food production data scarcity. Nature Reviews Earth & Environment, 5(4), 295-311. https://doi.org/10.1038/s43017-024-00516-2
Khalaj, F., Alidoust, S., & Pojani, D. (2023). Mapping urban transport-land use interactions worldwide, a state of practice. Handbook on Transport and Land Use, 147-166. https://doi.org/10.4337/9781800370258.00015
Khan, E. A., Nazar, M., & Khattak, U. K. (2023). Population dynamics and urbanization patterns in Pakistan: implications for sustainable development. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 1-11. https://doi.org/10.1080/17549175.2023.2285404
Kim, M. D. (2024). Deconstructing big data for development (BD4D): continuities and reflections of development discourse in the age of datafication. Information Technology for Development, 1-17. https://doi.org/10.1080/02681102.2024.2352382
Kindole, A., Msambichaka, J., Tekka, R., & Lingwanda, M. (2024). Examination of the impact of value engineering implementation on the overall maintenance performance of gravel roads maintenance projects in Tanzania. Journal of Applied Sciences and Environmental Management, 28(7), 1967-1982. https://doi.org/10.4314/jasem.v28i7.6
Komarica, J., Glavić, D., & Kaplanović, S. (2024). Predicting and analyzing electric bicycle adoption to enhance urban mobility in belgrade using ANN models. Applied Sciences, 14(19), 8965. https://doi.org/10.3390/app14198965
Liu, J., Xu, L., Ma, L., & Chen, N. (2024). Modeling population mobility flows: A hybrid approach integrating a gravity model and machine learning. ISPRS International Journal of Geo-Information, 13(11), 379. https://doi.org/10.3390/ijgi13110379
Lymperis, D., & Goumopoulos, C. (2023). Sedia: A platform for semantically enriched IOT data integration and development of smart city applications. Future Internet, 15(8), 276. https://doi.org/10.3390/fi15080276
Ma, Y., Liu, C. A., Hassini, E., & Razavi, S. (2024). A network-based, data-driven methodology for identifying and ranking freight bottlenecks. Data Science for Transportation, 6(3), 20. https://doi.org/10.1007/s42421-024-00107-z
Magina, F. B., Paul, B. N., & Lupala, J. M. (2024). Impacts of urban sprawl on people’s livelihoods: analysis of urban fringe neighbourhoods in Dar es Salaam, Tanzania. International Planning Studies, 1-15. https://doi.org/10.1080/13563475.2024.2358011
Man, N. I., & Majid, N. A. (2024). Exploring urban changes: The impact of mass rapid transit (mrt) construction in the context of development in the Klang valley, Malaysia. International Journal of Academic Research in Business and Social Sciences, 14(4), 231-241. http://dx.doi.org/10.6007/IJARBSS/v14-i4/20833
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in public health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014
McMahon, P. (2021). Development of missing data imputation models for railway asset management systems. Doctor of Philosophy thesis, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, 2021. https://ro.uow.edu.au/theses1/1205
Moeinaddini, A., & Habibian, M. (2023). Transportation demand management policy efficiency: An attempt to address the effectiveness and acceptability of policy packages. Transport Policy, 141, 317-330. https://doi.org/10.1016/j.tranpol.2023.07.027
Mohanty, A., Ramasamy, A. K., Verayiah, R., Bastia, S., Dash, S. S., Cuce, E., ... & Soudagar, M. E. M. (2024). Power system resilience and strategies for a sustainable infrastructure: A review. Alexandria Engineering Journal, 105, 261-279. https://doi.org/10.1016/j.aej.2024.06.092
Montenegro, A. L., Rey-Gozalo, G., Arenas, J. P., & Suárez, E. (2024). Streets classification models by urban features for road traffic noise estimation. Science of The Total Environment, 932, 173005. https://doi.org/10.1016/j.scitotenv.2024.173005
Mottee, L. K. (2024). The use of social impact assessment in transport projects. In Handbook of Social Impact Assessment and Management (pp. 67-80). Edward Elgar Publishing. https://doi.org/10.4337/9781802208870.00012
Moura, D. L., Aquino, A. L., & Loureiro, A. A. (2024). An edge computing and distributed ledger technology architecture for secure and efficient transportation. Ad Hoc Networks, 164, 103633. https://doi.org/10.1016/j.adhoc.2024.103633
Mpemba, J. (2024). What the design concepts and space standards say versus actual implementation on the ground: Implementation of zoning concepts and planning space standards for enhancing pedestrian mobility in planned residential neighbourhoods: The case of Sinza residential neigourood in Dar es Salaam, Tanzania. African Journal on Land Policy and Geospatial Sciences, 7(3), 876-895. https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v7i3.47887
Mthembu, Z. K., Patel, S. S., Naicker, N., Joseph, S., Madamshetty, L., Moonsamy, D., ... & Govender, T. P. (2024). Developing a data lakehouse for a South African government-sector training authority: Governance framework design through systematic literature review. Machine Learning and Data Science Techniques for Effective Government Service Delivery, 185-224. https://doi.org/10.4018/978-1-6684-9716-6.ch007
Münzel, T., Molitor, M., Kuntic, M., Hahad, O., Röösli, M., Engelmann, N., ... & Sørensen, M. (2024). Transportation noise pollution and cardiovascular health. Circulation Research, 134(9), 1113-1135. https://doi.org/10.1161/CIRCRESAHA.123.323584
Mwale, M., Pisa, N., & Luke, R. (2024). Travel mode choices of residents in developing cities: A case study of Lusaka, Zambia. Journal of Transport and Supply Chain Management, 18, 1-14. http://dx.doi.org/10.4102/jtscm.v18i0.1005
Mwongoso, A. J., Sirima, A., & Mgonja, J. T. (2023). Impacts of tourism development on residents’ quality of life: Efficacy of community capitals in gateway communities, northern Tanzania. Applied Research in Quality of Life, 18(5), 2511-2539. https://doi.org/10.1007/s11482-023-10196-7
Nalubega, S. I. (2023). Development of a Floating Car Data (FCD) model to evaluate traffic congestion: a case of Kampala, Uganda (Doctoral dissertation, Stellenbosch: Stellenbosch University). http://hdl.handle.net/10019.1/127253
Niaz, M., & Nwagwu, U. (2023). Managing healthcare product demand effectively in the post-Covid-19 environment: Navigating demand variability and forecasting complexities. American Journal of Economic and Management Business (AJEMB), 2(8), 316-330. https://doi.org/10.58631/ajemb.v2i8.55
Nicolet, A. (2024). Choice-driven methods for decision-making in intermodal Transport: Behavioral heterogeneity and supply-demand interactions. [Dissertation (TU Delft), Delft University of Technology]. TRAIL Research School. https://doi.org/10.4233/uuid:7c1347b5-62f5-474a-b96b-ec8ff2196ede
Ojo, B. (2024). Strategies for the optimization of critical infrastructure projects to enhance urban resilience to climate change. The Journal of Scientific and Engineering Research, 11, 107-123.
Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., & Liang, F. (2023). Smart transportation: an overview of technologies and applications. Sensors, 23(8), 3880. https://doi.org/10.3390/s23083880
Ong’anya, D. O. (2023). The influence of land use transit circulation and connectivity on economic vulnerability to disaster management in low income neighbourhood of eldoret urban area, Kenya. Journal of Aquatic and Terrestrial Ecosystems, 1(2), 11-30. https://doi.org/10.69897/jatems.v1i2.29
Owuor, D. O., Taylor, T. K., Simushi, S. S., & Mutondo, M. (2024). Blockchain-driven business model for sustainability among artisanal and small-scale mining operators in Zambia. Available at SSRN 4912560. https://ssrn.com/abstract=4912560
Pacheco, V. M. G., Paiva, J. P. Q., Furriel, B. C. R. S., Santos, P. V., Ferreira Junior, J. R., Reis, M. R. C., ... & Calixto, W. P. (2024). Pilot deployment of a cloud-based universal medical image repository in a large public health system: A protocol study. PloS one, 19(8), e0307022. https://doi.org/10.1371/journal.pone.0307022
Paiva, S., Ahad, M. A., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 2143. https://doi.org/10.3390/s21062143
Pamucar, D., Deveci, M., Gokasar, I., Martínez, L., & Köppen, M. (2022). Prioritizing transport planning strategies for freight companies towards zero carbon emission using ordinal priority approach. Computers & Industrial Engineering, 169, 108259. https://doi.org/10.1016/j.cie.2022.108259
Pan, Y., Cheng, Q., Li, A., Zhang, J., Guo, J., & Chen, Y. (2024). Analysis of congestion key parameters, dynamic discharge process, and capacity estimation at urban freeway bottlenecks: a case study in Beijing, China. Transportation Letters, 1-20. https://doi.org/10.1080/19427867.2024.2404349
Parekh, R., & Mitchell, O. (2024). Progress and obstacles in the use of artificial intelligence in civil engineering: An in-depth review. International Journal of Science and Research Archive, 13(1), 1059-1080. https://doi.org/10.30574/ijsra.2024.13.1.1777
Patil, D., Rane, N. L., Desai, P., & Rane, J. (2024). Machine learning and deep learning: Methods, techniques, applications, challenges, and future research opportunities. Trustworthy Artificial Intelligence in Industry and Society, 28-81. https://doi.org/10.70593/978-81-981367-4-9_2
Peng, C., Boyd, T., & Williams, K. (2024). Multimodal transportation planning. Mavs Open Press Open Educational Resources. 38. https://mavmatrix.uta.edu/oer_mavsopenpress/38
Pojani, D., & Stead, D. (2015). Sustainable urban transport in the developing world: beyond megacities. Sustainability, 7(6), 7784-7805. https://doi.org/10.3390/su7067784
Pot, F. J., van Wee, B., & Tillema, T. (2021). Perceived accessibility: What it is and why it differs from calculated accessibility measures based on spatial data. Journal of Transport Geography, 94, 103090. https://doi.org/10.1016/j.jtrangeo.2021.103090
Prus, P., & Sikora, M. (2021). The impact of transport infrastructure on the sustainable development of the region—Case study. Agriculture, 11(4), 279. https://doi.org/10.3390/agriculture11040279
Rabdiya, H., Rathod, R., Paul, A. B., & Joshi, G. (2024). A cross-classification analysis of household trip behavior to identify peer cities: a case study of three metropolitan cities in Gujarat, India. Innovative Infrastructure Solutions, 9(11), 417. https://doi.org/10.1007/s41062-024-01727-8
Ren, J., Zhou, X., Jin, X., Ye, Y., Causone, F., Ferrando, M., ... & Shi, X. (2024). A systematic review of occupancy pattern in urban building energy modeling: From urban to building-scale. Journal of Building Engineering, 110307. https://doi.org/10.1016/j.jobe.2024.110307
Rodrigue, J. P. (2020). The geography of transport systems. Routledge, London. https://doi.org/10.4324/9780429346323
Rong, C., Ding, J., & Li, Y. (2024). An interdisciplinary survey on origin-destination flows modeling: Theory and techniques. ACM Computing Surveys, 57(1), 1-49. https://doi.org/10.1145/3682058
Sakalayen, Q., Islam, M. S., Sakib, M. N., Cheng, A. T. H., & Hoque, I. (2024). Promoting public transportation in car-dominated societies: an inductive grounded theory study. PlumX Metrics. Available at SSRN 4813792. http://dx.doi.org/10.2139/ssrn.4813792
Sánchez, O., Castañeda, K., Vidal-Méndez, S., Carrasco-Beltrán, D., & Lozano-Ramírez, N. E. (2024). Exploring the influence of linear infrastructure projects 4.0 technologies to promote sustainable development in smart cities. Results in Engineering, 23, 102824. https://doi.org/10.1016/j.rineng.2024.102824
Sarker, M. N. I., Peng, Y., Yiran, C., & Shouse, R. C. (2020). Disaster resilience through big data: Way to environmental sustainability. International Journal of Disaster Risk Reduction, 51, 101769. https://doi.org/10.1016/j.ijdrr.2020.101769
Saw, K., Katti, B. K., Joshi, G. J., & Kedia, A. (2024). Travel time reliability evaluation using fuzzy-possibility approach: a case study of an Indian city. Transportation Planning and Technology, 1-19. https://doi.org/10.1080/03081060.2024.2341312
Sayed, S. A., Abdelhamid, Y., & Hefny, H. A. (2023). Traffic flow prediction using big data and geographic information systems: A survey of data sources, frameworks, challenges, and opportunities. International Journal of Computing and Digital Systems, 14(1). http://dx.doi.org/10.12785/ijcds/140147
Segun-Falade, O. D., Osundare, O. S., Kedi, W. E., Okeleke, P. A., Ijomah, T. I., & Abdul-Azeez, O. Y. (2024). Developing innovative software solutions for effective energy management systems in industry. Engineering Science & Technology Journal, 5(8). https://doi.org/10.51594/estj.v5i8.1517
Sharmeen, N., & Houston, D. (2020). Urban form, socio-demographics, attitude and activity spaces: Using household-based travel diary approach to understand travel and activity space behaviors. Urban Science, 4(4), 69. https://doi.org/10.3390/urbansci4040069
Shi, T., & Gao, F. (2024). Utilizing multi-source geospatial big data to examine how environmental factors attract outdoor jogging activities. Remote Sensing, 16(16), 3056. https://doi.org/10.3390/rs16163056
Shoman, W., Yeh, S., Sprei, F., Köhler, J., Plötz, P., Todorov, Y., ... & Speth, D. (2023). A review of big data in road freight transport modeling: gaps and potentials. Data Science for Transportation, 5(1), 2. https://doi.org/10.1007/s42421-023-00065-y
Silva, I. N. (2024). An analysis of models in transport simulation problems. Faculdade de engenharia da Universidade do Porto
Simon, O., Lyimo, J., & Yamungu, N. (2024). Exploring the impact of socioeconomic factors on land use and cover changes in Dar es Salaam, Tanzania: a remote sensing and GIS approach. Arabian Journal of Geosciences, 17(3), 99. https://doi.org/10.1007/s12517-024-11908-5
Simon, O., Lyimo, J., Gwambene, B., & Yamungu, N. (2024). Unveiling the transforming landscape: exploring patterns and drivers of land use/land cover change in Dar es Salaam Metropolitan City, Tanzania. African Geographical Review, 1-17. https://doi.org/10.1080/19376812.2024.2309405
Šlibar, B. (2024). Quality Assessment of Open Datasets Metadata (Doctoral dissertation, University of Zagreb. Faculty of Organization and Informatics). https://urn.nsk.hr/urn:nbn:hr:211:358083
Stavara, M., & Tsiotas, D. (2024). A combined graph theoretic and transport planning framework for the economic and functional analysis of large-scale road networks. Sustainable Regional Development Scientific Journal, 1(2), 27-39.
Sutheerakul, C., Kronprasert, N., Satiennam, W., & Zaw, M. S. (2024). Classification of roadway context and target speed for multilane highways in thailand using fuzzy expert system. Sustainability, 16(9), 3865. https://doi.org/10.3390/su16093865
Syed, U., Light, E., Guo, X., Zhang, H., Qin, L., Ouyang, Y., & Hu, B. (2024). Benchmarking the capabilities of large language models in transportation system engineering: Accuracy, consistency, and reasoning behaviors. arXiv preprint arXiv:2408.08302. https://doi.org/10.48550/arXiv.2408.08302
Taffel, S. (2023). Data and oil: Metaphor, materiality and metabolic rifts. New media & society, 25(5), 980-998. https://doi.org/10.1177/14614448211017887
Tatah, L. (2024). Modelling the health impacts of urban transport in Africa (Doctoral dissertation). https://doi.org/10.17863/CAM.105397
Tazzie, Y. D., Adugna, D., Woldetensae, B., Fryd, O., & Ingvardson, J. B. (2024). Exploring the factors hindering the intention to adopt sustainable transportation options in Addis Ababa, Ethiopia: using structural equation modeling. Frontiers in Sustainable Cities, 6, 1435705. https://doi.org/10.3389/frsc.2024.1435705
Tiong, K. Y., Ma, Z., & Palmqvist, C. (2023). A review of data-driven approaches to predict train delays. Transportation Research Part C: Emerging Technologies, 148, 104027. https://doi.org/10.1016/j.trc.2023.104027
Todd, G., Msuya, I., Levira, F. & Moshi, I. (2019). City profile: Dar es Salaam. Environment and Urbanization ASIA, 10(2) 193–215. https://doi.org/10.1177/0975425319859175.
Toilier, F., & Gardrat, M. (2024). Driver survey vs GPS tour data: Strength and weaknesses of the two sources in order to model the drivers’ journeys. Transportation research procedia, 76, 169-182. https://doi.org/10.1016/j.trpro.2023.12.047
Ukam, G., Adams, C., Adebanji, A., & Ackaah, W. (2024). Factors affecting paratransit travel time at route and segment levels. International Journal of Transportation Science and Technology, 14, 276-288. https://doi.org/10.1016/j.ijtst.2023.06.001
Ulvi, H., Yerlikaya, M. A., & Yildiz, K. (2024). Urban traffic mobility optimization model: a novel mathematical approach for predictive urban traffic analysis. Applied Sciences, 14(13), 5873. https://doi.org/10.3390/app14135873
Varotto, S. F., Krueger, R., & Bierlaire, M. (2024). Modelling travel behaviour: a choice modelling perspective. In Handbook of Travel Behaviour (pp. 118-139). Edward Elgar Publishing. https://doi.org/10.4337/9781839105746.00014
Verbrugge, B., Hasan, M. M., Rasool, H., Geury, T., El Baghdadi, M., & Hegazy, O. (2021). Smart integration of electric buses in cities: A technological review. Sustainability, 13(21), 12189. https://doi.org/10.3390/su132112189
Vermast, T. (2024). Mobility choices in less urbanized areas: A case study on the influence of parking policies on mobility choices within the municipality of Vijfheerenlanden (Master's thesis).
Vibbi, L. F. (2024). Poor data quality in sub-Saharan Africa and implications on ethical Ai development. In Improving Technology Through Ethics (pp. 83-92). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52962-7_7
Wang, N., Wu, M., & Yuen, K. F. (2024). Modelling and assessing long-term urban transportation system resilience based on system dynamics. Sustainable Cities and Society, 109, 105548. https://doi.org/10.1016/j.scs.2024.105548
Wolff, S., Mdemu, M. V., & Lakes, T. (2021). Defining the peri-urban: a multidimensional characterization of spatio-temporal land use along an urban–rural gradient in Dar es Salaam, Tanzania. Land, 10(2), 177. https://doi.org/10.3390/land10020177
Wu, P., Zhang, Z., Peng, X., & Wang, R. (2024). Deep learning solutions for smart city challenges in urban development. Scientific Reports, 14(1), 5176. https://doi.org/10.1038/s41598-024-55928-3
Xiong, J., Xu, L., Wei, Z., Wu, P., Li, Q., & Pei, M. (2024). Identifying, analyzing, and forecasting commuting patterns in urban public transportation: A review. Expert Systems with Applications, 123646. https://doi.org/10.1016/j.eswa.2024.123646
Yadav, M., Mepparambath, R. M., & Patil, G. R. (2024). An enhanced transit accessibility evaluation framework by integrating public transport accessibility levels (PTAL) and transit gap. Journal of Transport Geography, 121, 104013. https://doi.org/10.1016/j.jtrangeo.2024.104013
Yagi, S., & Nobel, D. (2017). Remodeling generation of trip activities in search of" new" method of demand forecast in developing countries: A case study of Jakarta Metropolitan area. Journal of the Eastern Asia Society for Transportation Studies, 12, 616-631. https://doi.org/10.11175/easts.12.616
Yang, Y., Jia, B., Yan, X. Y., Zhi, D., Song, D., Chen, Y., ... & Gao, Z. (2023). Uncovering and modeling the hierarchical organization of urban heavy truck flows. Transportation Research Part E: Logistics and Transportation Review, 179, 103318. https://doi.org/10.1016/j.tre.2023.103318
Yanocha, D., Mason, J., & Hagen, J. (2021). Using data and technology to integrate mobility modes in low-income cities. Transport reviews, 41(3), 262-284. https://doi.org/10.1080/01441647.2020.1834006
Yin, G., Huang, Z., Fu, C., Ren, S., Bao, Y., & Ma, X. (2024). Examining active travel behavior through explainable machine learning: Insights from Beijing, China. Transportation Research Part D: Transport and Environment, 127, 104038. https://doi.org/10.1016/j.trd.2023.104038
Zhang, S., Lo, H. K., Ng, K. F., & Chen, G. (2021). Metro system disruption management and substitute bus service: a systematic review and future directions. Transport Reviews, 41(2), 230-251. https://doi.org/10.1080/01441647.2020.1834468
Zhang, X., Ke, Q., & Zhao, X. (2024). Travel demand forecasting: A fair ai approach. IEEE Transactions on Intelligent Transportation Systems 10(25), 14611 – 14627. 10.1109/TITS.2024.3395061
Zhao, P., & Yuan, D. (2023). Effects of family structure on travel behaviour. In Population Growth and Sustainable Transport in China (pp. 233-266). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7470-0_7
Zheng, H., Sun, H., Wu, J., & Kang, L. (2024). Alternative service network design for bus systems responding to time-varying road disruptions. Transportation Research Part B: Methodological, 188, 103042. https://doi.org/10.1016/j.trb.2024.103042
Downloads
Published
Versions
- 30-04-2025 (2)
- 30-04-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 African Journal on Land Policy and Geospatial Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The African Journal on Land Policy and Geospatial Sciences (AJLP&GS) is made available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License https://creativecommons.org/licenses/by-nc-sa/4.0/. Authors with free access retain the copyright of their manuscripts. All open access manuscripts are published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, etc. in this publication, even if not specifically identified, does not imply that applicable laws and regulations do not protect these names. Even though the advice and information in this journal are true and accurate as of the date of its publication, neither the authors, the editor, nor the publisher can assume any legal responsibility for any errors or omissions.