Geospatial Land cover change analysis using the CA-Markov Chain Model in Chikwawa District, Malawi

Authors

  • Japhet Khendlo University of Mascareignes
  • Rajeshwar Goodary University of Mascareignes
  • Roodheer Beeharry

DOI:

https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v8i4.52380

Abstract

Changes in Forest cover impact the local climate by altering energy and water exchanges, assessing and quantifying these changes is crucial for sustainable resource management and the protection of ecosystems. The study evaluated IsoData, Support Vector Machine, Random Forest, and Maximum Likelihood classifiers using Kappa Coefficient and accuracy metrics for Landsat images (1979-2023). CA-Markov projected future land cover for 2035, 2045, and 2065, while Spearman rank correlation assessed the statistical significance of changes. The Random Forest classification yielded the highest accuracies, with Kappa coefficients of 85%, 86%, 86%, and 90%, and overall accuracy of 88%, 90%, 90%, and 93% for 1979, 1995, 2009, and 2023. Forest, vegetation, and water decreased by 21%, 3%, and 0.3%, while built areas and bare land increased by 22% and 16% over 44 years. The predicted results of Land Cover changes indicate a sharp decrease in Forest cover (- 28.6%, -33.8% and -51.0%), Vegetation (-12.9%, -19.8% and -24.7%) and Water (-28.2%, -12.3% and -14.0%) with an increase in the Built up area (+23.2%, +22.2% and +22.8%) and Bare land (+13.0%, +15.3% and +37.1%) for the period 2035-2023, 2045-2035 and 2065-2045 respectively. Validation of predictive outcomes and the assessment of model accuracy were conducted using the CA-Markov and Kappa index. The CA-Markov model demonstrated a level of agreement ranging from good to perfect for the three testing years: 2009 (CA-Markov = 83.4, Kno = 0.79, klocation = 0.81 and Kstandard=0.81), 2011 (CA-Markov = 82.7, Kno = 0.81, klocation = 0.79 and Kstandard=0.82) and 2023 (CA-Markov = 81.6, Kno = 0.80, klocation = 0.84 and Kstandard=0.83). Over the past 44 years, the study area has seen a significant decrease in forest land, a trend that is expected to continue without intervention. This ongoing deforestation will exacerbate the absorption of runoff and increase flood severity in the district.

References

Aalders, I. (2008) ‘Modeling land-use decision behavior with Bayesian belief networks’, Ecology and Society, 13(1). Available at: https://doi.org/10.5751/ES-02362-130116.

Ahmad, H., Abdallah, M., Jose, F., Elzain, H.E., Bhuyan, M.S., Shoemaker, D.J. and Selvam, S. (2023) ‘Evaluation and mapping of predicted future land use changes using hybrid models in a coastal area’, Ecological Informatics, 78(May), p. 102324. Available at: https://doi.org/10.1016/j.ecoinf.2023.102324.

Ait El Haj, F., Ouadif, L. and Akhssas, A. (2023) ‘Simulating and predicting future land-use/land cover trends using CA- Markov and LCM models’, Case Studies in Chemical and Environmental Engineering, 7(March), p. 100342. Available at: https://doi.org/10.1016/j.cscee.2023.100342.

Akbar, F. and Supriatna (2019) ‘Land cover modelling of Pelabuhanratu City in 2032 using celullar automata-markov chain method’, IOP Conference Series: Earth and Environmental Science, 311(1). Available at: https://doi.org/10.1088/1755-1315/311/1/012071.

Akdeniz, H.B., Sag, N.S. and Inam, S. (2023) ‘Analysis of land use/land cover changes and prediction of future changes with land change modeler: Case of Belek, Turkey’, Environmental Monitoring and Assessment, 195(1), pp. 1–28. Available at: https://doi.org/10.1007/s10661-022-10746-w.

Alencar, A., Shimbo, J.Z., Lenti, F., Marques, C.B., Zimbres, B., Rosa, M., Arruda, V., Castro, I., Ribeiro, J.P.F.M., Varela, V., Alencar, I., Piontekowski, V., Ribeiro, V., Bustamante, M.M.C., Sano, E.E. and Barroso, M. (2020) ‘Mapping three decades of changes in the brazilian savanna native vegetation using landsat data processed in the google earth engine platform’, Remote Sensing, 12(6). Available at: https://doi.org/10.3390/rs12060924.

Alexander, P., Rounsevell, M.D.A., Dislich, C., Dodson, J.R., Engström, K. and Moran, D. (2015) ‘Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy’, Global Environmental Change, 35, pp. 138–147. Available at: https://doi.org/10.1016/j.gloenvcha.2015.08.011.

Alkaradaghi, K., Ali, S.S., Al-Ansari, N. and Laue, J. (2019) Land Use Classification and Change Detection Using Multi-temporal Landsat Imagery in Sulaimaniyah Governorate, Iraq, Advances in Science, Technology and Innovation. Springer International Publishing. Available at: https://doi.org/10.1007/978-3-030-01440-7_28.

Alshari, E.A. and Gawali, B.W. (2022) ‘Modeling Land Use Change in Sana’a City of Yemen with MOLUSCE’, Journal of Sensors, 2022. Available at: https://doi.org/10.1155/2022/7419031.

Amini, S., Saber, M., Rabiei-Dastjerdi, H. and Homayouni, S. (2022) ‘Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series’, Remote Sensing, 14(11), pp. 1–23. Available at: https://doi.org/10.3390/rs14112654.

Avtar, R., Rinamalo, A.V., Umarhadi, D.A., Gupta, A., Khedher, K.M., Yunus, A.P., Singh, B.P., Kumar, P., Sahu, N. and Sakti, A.D. (2022) ‘Land Use Change and Prediction for Valuating Carbon Sequestration in Viti Levu Island, Fiji’, Land, 11(8). Available at: https://doi.org/10.3390/land11081274.

Bahari, N.I.S., Ahmad, A. and Aboobaider, B.M. (2014) ‘Application of support vector machine for classification of multispectral data’, IOP Conference Series: Earth and Environmental Science, 20(1). Available at: https://doi.org/10.1088/1755-1315/20/1/012038.

Baker, W.L. (1989) ‘A review of models of landscape change’, Landscape Ecology, 2(2), pp. 111–133. Available at: https://doi.org/10.1007/BF00137155.

Bogoliubova, A. and Tymków, P. (2014) ‘Accuracy Assessment of Automatic Image Processing for Land Cover Classification of St . Petersburg Protected Area’, Acta Scientiarum Polonorum, Administratio Locorum, 13(1–2), pp. 5–22.

Bourguignon, F., Sierra, K. and Chomitz, K.M. (2007) ‘Deforestation Imposes Geographically Varied Environmental Damages’, At Loggerheads: Agricultural Expansion, Poverty Reduction, and Environment in the Tropical Forests, pp. 109–134.

Bradshaw, C.J.A., Sodhi, N.S., Peh, K.S.H. and Brook, B.W. (2007) ‘Global evidence that deforestation amplifies flood risk and severity in the developing world’, Global Change Biology, 13(11), pp. 2379–2395. Available at: https://doi.org/10.1111/j.1365-2486.2007.01446.x.

Brinkhoff, J., Vardanega, J. and Robson, A.J. (2020) ‘Land cover classification of nine perennial crops using sentinel-1 and -2 data’, Remote Sensing, 12(1), pp. 1–26. Available at: https://doi.org/10.3390/rs12010096.

Burrewar, S.S., Haque, M. and Haider, T.U. (2024) ‘Convolutional Neural Network Methods for Detecting Land-Use Changes’, International Journal of Intelligent Systems and Applications in Engineering, 12(14s), pp. 573–590.

Butler, R.A. (2019) ‘The impact of deforestation’, Mongabay, pp. 1–13. Available at: https://rainforests.mongabay.com/09-consequences-of-deforestation.html.

Celio, E., Koellner, T. and Grêt-Regamey, A. (2014) ‘Modeling land use decisions with Bayesian networks: Spatially explicit analysis of driving forces on land use change’, Environmental Modelling and Software, 52(February), pp. 222–233. Available at: https://doi.org/10.1016/j.envsoft.2013.10.014.

Chambers, F., Cruz, C., Di, G., Serugendo, M., Chambers, F., Cruz, C., Di, G. and Serugendo, M. (2023) ‘Agent-based modelling of urban expansion and land cover change : a prototype for the analysis of commuting patterns in Geneva , Switzerland To cite this version : HAL Id : hal-04146986’.

Chikwawa District Council (2020) ‘Chikwawa District Physical Development Plan’, (August).

Colorado, N. and Network, P. (2011) ‘Land Cover Monitoring’, Program [Preprint].

Daulos Mauambeta , David Chitedze, Reginald Mumba, S.G. (2010) ‘STATUS OF FORESTS AND TREE MANAGEMENT IN MALAWI A Position Paper Prepared for the CURE’, Coordination Union for Rehabilitation of the Environment [Preprint], (August). Available at: https://cepa.rmportal.net/Library/biodiversity/Status of Forests and Tree Management in Malawi.pdf.

Degerickx, J., Roberts, D.A. and Somers, B. (2019) ‘Enhancing the performance of Multiple Endmember Spectral Mixture Analysis (MESMA) for urban land cover mapping using airborne lidar data and band selection’, Remote Sensing of Environment, 221(August 2018), pp. 260–273. Available at: https://doi.org/10.1016/j.rse.2018.11.026.

Dhriti Rudrapal and Mansi Subhedar (2015) ‘Land Cover Classification using Support Vector Machine’, International Journal of Engineering Research and, V4(09). Available at: https://doi.org/10.17577/ijertv4is090611.

Djenontin, I.N.S., Zulu, L.C. and Richardson, R.B. (2022) ‘Smallholder farmers and forest landscape restoration in sub-Saharan Africa: Evidence from Central Malawi’, Land Use Policy, 122(August), p. 106345. Available at: https://doi.org/10.1016/j.landusepol.2022.106345.

Du, P., Liu, S., Liu, P., Tan, K. and Cheng, L. (2014) ‘Sub-pixel change detection for urban land-cover analysis via multi-temporal remote sensing images’, Geo-Spatial Information Science, 17(1), pp. 26–38. Available at: https://doi.org/10.1080/10095020.2014.889268.

ESRI (2022) ‘Overview of image classification—ArcGIS Pro | Documentation’, Esri - ArcGIS Pro [Preprint]. Available at: https://pro.arcgis.com/en/pro-app/2.8/help/analysis/image-analyst/overview-of-image-classification.htm.

‘FAOSTAT’ (no date).

Fisher, M. (2004) ‘Household welfare and forest dependence in southern Malawi’, Environment and Development Economics, 9(1), pp. 135–154. Available at: https://doi.org/10.1017/s1355770x03001219.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N. and Snyder, P.K. (2005) ‘Global consequences of land use’, Science, 309(5734), pp. 570–574. Available at: https://doi.org/10.1126/science.1111772.

Gharaibeh, A., Shaamala, A., Obeidat, R. and Al-Kofahi, S. (2020) ‘Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model’, Heliyon, 6(9), p. e05092. Available at: https://doi.org/10.1016/j.heliyon.2020.e05092.

Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S.K., Ghosh, S., Mitra, D., Ghosh, T. and Hazra, S. (2017) ‘Application of Cellular automata and Markov-chain model in geospatial environmental modeling- A review’, Remote Sensing Applications: Society and Environment, 5, pp. 64–77. Available at: https://doi.org/10.1016/j.rsase.2017.01.005.

Gislason, P.O., Benediktsson, J.A. and Sveinsson, J.R. (2006) ‘Random forests for land cover classification’, Pattern Recognition Letters, 27(4), pp. 294–300. Available at: https://doi.org/10.1016/j.patrec.2005.08.011.

Gondwe, M.F., Cho, M.A., Chirwa, P.W. and Geldenhuys, C.J. (2019) ‘Land use land cover change and the comparative impact of co-management and government-management on the forest cover in Malawi (1999-2018)’, Journal of Land Use Science, 14(4–6), pp. 281–305. Available at: https://doi.org/10.1080/1747423X.2019.1706654.

Government of Malawi (2023) ‘Malawi 2023 Tropical Cyclone Freddy Post-Disaster Needs Assessment’, (April), pp. 1–102. Available at: https://www.preventionweb.net/media/87994/download?startDownload=true.

Di Gregorio, A. (2016) Land Cover Classification System: Classification Concepts, October. Available at: https://www.fao.org/3/x0596e/x0596e00.htm%0Ahttp://www.fao.org/docrep/003/x0596e/x0596e00.htm.

Hahn, C., Wijaya, A. and Gloaguen, R. (2007) ‘Application of Support Vector Machine for Complex Land Cover Classification using Aster and Landsat Data’, DGPF Proceeding, 16(Figure 2), pp. 149–154.

Häme, T., Sirro, L., Kilpi, J., Seitsonen, L., Andersson, K. and Melkas, T. (2020) ‘A hierarchical clustering method for land cover change detection and identification’, Remote Sensing, 12(11). Available at: https://doi.org/10.3390/rs12111751.

Heydari, S.S. and Mountrakis, G. (2018) Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites, Remote Sensing of Environment. Available at: https://doi.org/10.1016/j.rse.2017.09.035.

Hodgson, F.W. (2020) ‘Layout and design’, Modern Newspaper Practice, pp. 94–119. Available at: https://doi.org/10.4324/9780080885728-12.

Jagger, P. and Perez-Heydrich, C. (2016) ‘Land use and household energy dynamics in Malawi’, Environmental Research Letters, 11(12). Available at: https://doi.org/10.1088/1748-9326/11/12/125004.

Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A. and Qin, S. (2022) ‘Modeling and Predicting Land Use Land Cover Spatiotemporal Changes: A Case Study in Chalus Watershed, Iran’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, pp. 5496–5513. Available at: https://doi.org/10.1109/JSTARS.2022.3189528.

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J. and Xian, G. (2013) ‘A comprehensive change detection method for updating the National Land Cover Database to circa 2011’, Remote Sensing of Environment, 132(December), pp. 159–175. Available at: https://doi.org/10.1016/j.rse.2013.01.012.

Jumbe, C.B.L. and Angelsen, A. (2007) ‘Forest dependence and participation in CPR management: Empirical evidence from forest co-management in Malawi’, Ecological Economics, 62(3–4), pp. 661–672. Available at: https://doi.org/10.1016/j.ecolecon.2006.08.008.

Karakus, C.B., Cerit, O. and Kavak, K.S. (2015) ‘Determination of Land Use/Cover Changes and Land Use Potentials of Sivas City and its Surroundings Using Geographical Information Systems (GIS) and Remote Sensing (RS)’, Procedia Earth and Planetary Science, 15, pp. 454–461. Available at: https://doi.org/10.1016/j.proeps.2015.08.040.

Kaya, I.A. and Görgün, E.K. (2020) ‘Land Use and Land Cover Change in Tuticorin Coast Using Remote Sensing and Geographic Information System Land Use and Land Cover Change in Tuticorin Coast Using Remote Sensing and Geographic Information System’, Environ Monit Assess, (January), p. 18.

Khawaldah, H.A., Farhan, I. and Alzboun, N.M. (2020) ‘Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model’, Global Journal of Environmental Science and Management, 6(2), pp. 215–232. Available at: https://doi.org/10.22034/gjesm.2020.02.07.

Lemenkova, P. (2021) ‘Evaluating land cover types from Landsat TM using SAGA GIS for vegetation mapping based on ISODATA and K-means clustering’, Acta agriculturae Serbica, 26(52), pp. 159–165. Available at: https://doi.org/10.5937/aaser2152159l.

Li, Q., Qiu, C., Ma, L., Schmitt, M. and Zhu, X.X. (2020) ‘Mapping the land cover of africa at 10 m resolution from multi-source remote sensing data with google earth engine’, Remote Sensing, 12(4), pp. 1–22. Available at: https://doi.org/10.3390/rs12040602.

Liu, G.R. (2022) ‘Unsupervised Learning Techniques’, Machine Learning with Python, pp. 585–624. Available at: https://doi.org/10.1142/9789811254185_0017.

Lukas, P., Melesse, A.M. and Kenea, T.T. (2023) ‘Prediction of Future Land Use/Land Cover Changes Using a Coupled CA-ANN Model in the Upper Omo–Gibe River Basin, Ethiopia’, Remote Sensing, 15(4). Available at: https://doi.org/10.3390/rs15041148.

Manandhar, R., Odehi, I.O.A. and Ancevt, T. (2009) ‘Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement’, Remote Sensing, 1(3), pp. 330–344. Available at: https://doi.org/10.3390/rs1030330.

Marko, K., Zulkarnain, F. and Kusratmoko, E. (2016) ‘Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: Upper Ci Leungsi catchment area)’, IOP Conference Series: Earth and Environmental Science, 47(1). Available at: https://doi.org/10.1088/1755-1315/47/1/012032.

Mas, J.F. (2003) ‘An Artificial Neural Networks Approach to Map Land Use/Cover Using Landsat Imagery and Ancillary Data’, International Geoscience and Remote Sensing Symposium (IGARSS), 6(May), pp. 3498–3500. Available at: https://doi.org/10.1109/igarss.2003.1294833.

Minde, I.J., Kowero, G., Ngugi, D. and Luhanga, J. (2001) ‘Agricultural land expansion and deforestation in Malawi’, Forests Trees and Livelihoods, 11(2), pp. 167–182. Available at: https://doi.org/10.1080/14728028.2001.9752384.

Mishra, V., Rai, P. and Mohan, K. (2014) ‘Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India’, Journal of the Geographical Institute Jovan Cvijic, SASA, 64(1), pp. 111–127. Available at: https://doi.org/10.2298/ijgi1401111m.

Mixed Migration Centre (2023) ‘Climate and mobility case study: Chikwawa, Malawi: Nchalo Chikwawa’, (August 2021).

Munthali, K.G. and Murayama, Y. (2011) ‘Land use/cover change detection and analysis for Dzalanyama forest reserve, Lilongwe, Malawi’, Procedia - Social and Behavioral Sciences, 21, pp. 203–211. Available at: https://doi.org/10.1016/j.sbspro.2011.07.035.

Munthali, M.G., Davis, N., Adeola, A.M., Botai, J.O., Kamwi, J.M., Chisale, H.L.W. and Orimoogunje, O.O.I. (2019) ‘Local perception of drivers of Land-Use and Land- Cover change dynamics across Dedza district, Central Malawi region’, Sustainability (Switzerland), 11(3). Available at: https://doi.org/10.3390/su11030832.

Munthali, M.G., Mustak, S., Adeola, A., Botai, J., Singh, S.K. and Davis, N. (2020) ‘Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model’, Remote Sensing Applications: Society and Environment, 17(November 2019), p. 100276. Available at: https://doi.org/10.1016/j.rsase.2019.100276.

Nascimento, N., West, T.A.P., Biber-Freudenberger, L., Sousa-Neto, E.R. d., Ometto, J. and Börner, J. (2020) ‘A Bayesian network approach to modelling land-use decisions under environmental policy incentives in the Brazilian Amazon’, Journal of Land Use Science, 15(2–3), pp. 127–141. Available at: https://doi.org/10.1080/1747423X.2019.1709223.

National Statistical Office (2019) ‘MALAWI POPULATION AND HOUSING CENSUS REPORT-2018 2018 Malawi Population and Housing Main Report’, (May). Available at: http://www.nsomalawi.mw/images/stories/data_on_line/demography/census_2018/2018 Malawi Population and Housing Census Main Report.pdf.

Nazombe, K. and Nambazo, O. (2023) ‘Monitoring and assessment of urban green space loss and fragmentation using remote sensing data in the four cities of Malawi from 1986 to 2021’, Scientific African, 20. Available at: https://doi.org/10.1016/j.sciaf.2023.e01639.

Nguyen, Houng Thi Thanh, Doan, T.M., Tomppo, E. and McRoberts, R.E. (2020) ‘Land Use / Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and Four Classification’, Remote Sens, 12, pp. 1–27. Available at: www.mdpi.com/journal/remotesensing.

Nguyen, H. T.T., Pham, T.A., Doan, M.T. and Tran, P.T.X. (2020) ‘Land use/land cover change prediction using multi-temporal satellite imagery and multi-layer perceptron markov model’, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 54(3/W1), pp. 99–105. Available at: https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-99-2020.

Van Niel, T.G., McVicar, T.R. and Datt, B. (2005) ‘On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification’, Remote Sensing of Environment, 98(4), pp. 468–480. Available at: https://doi.org/10.1016/j.rse.2005.08.011.

Norovsuren, B., Tseveen, B., Batomunkuev, V., Renchin, T., Natsagdorj, E., Yangiv, A. and Mart, Z. (2019) ‘Land cover classification using maximum likelihood method (2000 and 2019) at Khandgait valley in Mongolia’, IOP Conference Series: Earth and Environmental Science, 381(1). Available at: https://doi.org/10.1088/1755-1315/381/1/012054.

Nyirenda, H. (2022) ‘Changes in tree structure, composition and soil in different disturbance categories in Miombo and agroecosystems in Malawi, central Africa’, Heliyon, 8(9), p. e10664. Available at: https://doi.org/10.1016/j.heliyon.2022.e10664.

Of, T.H.E.S. (2022) ‘In Brief to The State of the World’s Forests 2022’, In Brief to The State of the World’s Forests 2022 [Preprint]. Available at: https://doi.org/10.4060/cb9363en.

Pacheco, P. (2017) ‘Deforestation Fronts Drivers and Responses in a Changing World’, pp. 1–125.

Pangapanga-Phiri, I., Mungatana, E.D., Pangapanga, L. and Nkoka, F.S. (2022) ‘Understanding the impact of sustainable land-scape management practices on farm productivity under intensifying tropical cyclones: Evidence from Southern Malawi’, Tropical Cyclone Research and Review, 11(4), pp. 265–276. Available at: https://doi.org/10.1016/j.tcrr.2023.02.002.

Parker, D.C., Berger, T. and Manson, S.M. (2001) ‘Agent-Based Models of Land-Use and Land-Cover Change - Report and review of an international workshop October 4 - 7, 2001, Irvine, California, USA’, (6).

Phillips, P.M. and João, E. (2017) ‘Land use planning and the ecosystem approach: An evaluation of case study planning frameworks against the Malawi Principles’, Land Use Policy, 68(November 2016), pp. 460–480. Available at: https://doi.org/10.1016/j.landusepol.2017.08.006.

Pullanikkatil, D., Palamuleni, L. and Ruhiiga, T. (2016) ‘Assessment of land use change in Likangala River catchment, Malawi: A remote sensing and DPSIR approach’, Applied Geography, 71, pp. 9–23. Available at: https://doi.org/10.1016/j.apgeog.2016.04.005.

Pullanikkatil, D., Palamuleni, L.G. and Ruhiiga, T.M. (2016) ‘Land use/land cover change and implications for ecosystems services in the Likangala River Catchment, Malawi’, Physics and Chemistry of the Earth, 93, pp. 96–103. Available at: https://doi.org/10.1016/j.pce.2016.03.002.

R, V. (2020) ‘Unsupervised ISODATA algorithm classification used in the landsat image for predicting the expansion of Salem urban, Tamil Nadu’, Indian Journal of Science and Technology, 13(16), pp. 1619–1629. Available at: https://doi.org/10.17485/ijst/v13i16.271.

Radoux, J. and Bogaert, P. (2017) ‘Good practices for object-based accuracy assessment’, Remote Sensing, 9(7). Available at: https://doi.org/10.3390/rs9070646.

Ramankutty, N. and Foley, J.A. (1999) ‘Estimating historical changes in global land cover: Croplands from 1700 to 1992’, Global Biogeochemical Cycles, 13(4), pp. 997–1027. Available at: https://doi.org/10.1029/1999GB900046.

Rana, V.K. and Venkata Suryanarayana, T.M. (2020) ‘Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands’, Remote Sensing Applications: Society and Environment, 19(July), p. 100351. Available at: https://doi.org/10.1016/j.rsase.2020.100351.

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-Sanchez, J.P. (2012a) ‘An assessment of the effectiveness of a random forest classifier for land-cover classification’, ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), pp. 93–104. Available at: https://doi.org/10.1016/j.isprsjprs.2011.11.002.

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-Sanchez, J.P. (2012b) ‘An assessment of the effectiveness of a random forest classifier for land-cover classification’, ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), pp. 93–104. Available at: https://doi.org/10.1016/j.isprsjprs.2011.11.002.

Rwanga, S.S. and Ndambuki, J.M. (2017) ‘Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS’, International Journal of Geosciences, 08(04), pp. 611–622. Available at: https://doi.org/10.4236/ijg.2017.84033.

Sarker, I.H. (2021) ‘Machine Learning: Algorithms, Real-World Applications and Research Directions’, SN Computer Science, 2(3), pp. 1–21. Available at: https://doi.org/10.1007/s42979-021-00592-x.

Shi, D. and Yang, X. (2015) ‘Support Vector Machines for Land Cover Mapping from Remote Sensor Imagery’, pp. 265–279. Available at: https://doi.org/10.1007/978-94-017-9813-6_13.

Shih, H. chien, Stow, D.A., Chang, K.C., Roberts, D.A. and Goulias, K.G. (2022) ‘From land cover to land use: applying random forest classifier to Landsat imagery for urban land-use change mapping’, Geocarto International, 37(19), pp. 5523–5546. Available at: https://doi.org/10.1080/10106049.2021.1923827.

Shivakumar, B.R. and Rajashekararadhya, S. V. (2018) ‘Investigation on land cover mapping capability of maximum likelihood classifier: A case study on North Canara, India’, Procedia Computer Science, 143, pp. 579–586. Available at: https://doi.org/10.1016/j.procs.2018.10.434.

de Souza, J.M., Morgado, P., da Costa, E.M. and de Novaes Vianna, L.F. (2022) ‘Modeling of Land Use and Land Cover (LULC) Change Based on Artificial Neural Networks for the Chapecó River Ecological Corridor, Santa Catarina/Brazil’, Sustainability (Switzerland), 14(7). Available at: https://doi.org/10.3390/su14074038.

Svoboda, J., Štych, P., Laštovička, J., Paluba, D. and Kobliuk, N. (2022) ‘Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia’, Remote Sensing, 14(5). Available at: https://doi.org/10.3390/rs14051189.

Taati, A., Sarmadian, F., Mousavi, A., Pour, C.T.H. and Shahir, A.H.E. (2015) ‘Land use classification using support vector machine and maximum likelihood algorithms by landsat 5 TM images’, Walailak Journal of Science and Technology, 12(8), pp. 681–687.

Teluguntla, P., Thenkabail, P., Oliphant, A., Xiong, J., Gumma, M.K., Congalton, R.G., Yadav, K. and Huete, A. (2018) ‘A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform’, ISPRS Journal of Photogrammetry and Remote Sensing, 144(February), pp. 325–340. Available at: https://doi.org/10.1016/j.isprsjprs.2018.07.017.

Tessema, N., Kebede, A. and Yadeta, D. (2020) ‘Modeling land use dynamics in the Kesem sub-basin, Awash River basin, Ethiopia’, Cogent Environmental Science, 6(1). Available at: https://doi.org/10.1080/23311843.2020.1782006.

Tokar, O., Vovk, O., Kolyasa, L., Havryliuk, S. and Korol, M. (2018) ‘Using the random forest classification for land cover interpretation of landsat images in the prykarpattya region of Ukraine’, International Scientific and Technical Conference on Computer Sciences and Information Technologies, 1(November), pp. 241–244. Available at: https://doi.org/10.1109/STC-CSIT.2018.8526646.

Ulbricht, K.A., Teotia, H.S. and Civco, D.L. (1993) ‘Supervised Classification to Land Cover Mapping in Semi-Arid Environment of NE Brazil Using Landsat-TM and SPOT Data’, International Archives of Photogrammetry and Remote Sensing, 29, pp. 821–821. Available at: http://www.isprs.org/proceedings/XXIX/congress/part7/821_XXIX-part7.pdf.

Wang, Y. and Lu, D. (2017) ‘Mapping Torreya grandis spatial distribution using high spatial resolution satellite imagery with the expert rules-based approach’, Remote Sensing, 9(6). Available at: https://doi.org/10.3390/rs9060564.

Wu, G., Zhong, B., Si, H., Wei, B., Wu, Q. and Song, C. (2007) ‘Agent-based modeling in land use and land cover change studies’, Geoinformatics 2007: Remotely Sensed Data and Information, 6752, p. 675232. Available at: https://doi.org/10.1117/12.761292.

Yang, M.H. and Moghaddam, B. (2000) ‘Gender classification using support vector machines’, IEEE International Conference on Image Processing, 2(09), pp. 471–474.

Zhang, J., Pan, Y., Yi, C., Ma, Q. and Xu, C. (2008) ‘An integrated approach using ISODATA and SVR to land cover classification: an example of wheat’, Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, 7147(2006), p. 71470C. Available at: https://doi.org/10.1117/12.813212.

Downloads

Published

30-04-2025 — Updated on 30-04-2025

Versions

How to Cite

Khendlo, J., Goodary, R., & Beeharry, R. (2025). Geospatial Land cover change analysis using the CA-Markov Chain Model in Chikwawa District, Malawi. African Journal on Land Policy and Geospatial Sciences, 8(4), 612–630. https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v8i4.52380

Issue

Section

Geospatial Sciences and Land Governance