SATELLITE AND ARTIFICIAL INTELLIGENCE IN MAPPING MULTIDIMENSIONAL POVERTY IN AFRICA

Authors

  • Ifechukwu Ugochukwu Nzelibe Federal University of Technology, Akure

DOI:

https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v7i1.44087

Keywords:

Africa, Artificial Intelligence (AI), Geospatial, Mapping, Multidimensional Poverty Index (MPI), Satellite

Abstract

Context and background

Multidimensional Poverty (MP) considers poverty in multiple dimensions of deprivations such as health, education, energy, the standard of living and access to basic services. MP remains a major challenge in Africa, with a large proportion of the population living in MP. According to United Nations Development Programme (UNDP), Africa has shown the highest Multidimensional Poverty Index (MPI) having over 40% of its population living in MP.

Goal and Objectives:

This paper is a review, aimed at assessing the potential of the integration of satellite and Artificial Intelligence (AI) in mapping MP, with a specific focus on Africa.

Methodology:

Based on the reviews of past studies, the combination of satellite data such as nighttime light, daytime satellite imagery and high-resolution settlement data in combination with techniques such as field surveys, statistical correlation models (transfer learning) and AI (deep learning) has been applied in mapping MP.

Results:

The findings from studies show that the combination of satellite data and AI has the capability of providing more accurate and granular MP maps, compared to the traditional approach. Again, this paper explains the concept of MP with a specific focus on Africa and presents a map depicting the current MPI in African countries. Finally, pitfalls especially in the accuracy, granularity and frequency of MP data were identified. Consequently, the satellite and AI approaches are recommended for more accurate, frequent, cost-effective and granular data, required in mapping poverty and design of interventions that effectively address the needs of the vulnerable populations in Africa.

 

Author Biography

Ifechukwu Ugochukwu Nzelibe, Federal University of Technology, Akure

Department of Surveveying and Geoinformatics

References

Abdel-Rahman, E. M., Ahmed, F. B., & Ismail, R. (2013). Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. International Journal of Remote Sensing, 34(2), 712–728. https://doi.org/10.1080/01431161.2012.713142

Abeje, M. T., Tsunekawa, A., Haregeweyn, N., Ayalew, Z., Nigussie, Z., Berihun, D., Adgo, E., & Elias, A. (2020). Multidimensional Poverty and Inequality: Insights from the Upper Blue Nile Basin, Ethiopia. Social Indicators Research, 149(2), 585–611. https://doi.org/10.1007/s11205-019-02257-y

Achdut, N., Refaeli, T., & Schwartz Tayri, T. M. (2021). Subjective Poverty, Material Deprivation Indices and Psychological Distress Among Young Adults: The Mediating Role of Social Capital and Usage of Online Social Networks. Social Indicators Research, 158(3), 863–887. https://doi.org/10.1007/s11205-021-02729-0

Alkire, S., & Foster, J. E. (2011). Counting and Multidimensional Poverty Measurement . Journal of Public Economics, 95(7–8).

Asian Development Bank (ADB). (2020). Mapping Poverty through Data Integration and Artificial Intelligence: https://doi.org/10.22617/FLS200215-3

Ayush, K., Uzkent, B., Burke, M., Lobell, D., & Ermon, S. (2020). Generating interpretable poverty maps using object detection in satellite images. Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Special Track on AI for Computational Sustainability and Human Well-Being, 4410–4416.

Ayush, K., Uzkent, B., Tanmay, K., Burke, M., Lobell, D., & Ermon, S. (2021). Efficient Poverty Mapping from High Resolution Remote Sensing Images. Proceedings of the AAAI Conference on Artificial Intelligence, 35(1), 12–20. https://doi.org/10.1609/aaai.v35i1.16072

Batana, Y. M. (2013). Multidimensional Measurement of Poverty Among Women in Sub-Saharan Africa. Social Indicators Research, 112(2), 337–362. https://doi.org/10.1007/s11205-013-0251-9

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Berenger, V. (2019). The counting approach to multidimensional poverty. The case of four African countries. South African Journal of Economics, 87(2), 200–227. https://doi.org/10.1111/saje.12217

Bigman, D., & Fofack, H. (2000). Geographical Targeting for Poverty Alleviation. The World Bank. https://doi.org/10.1596/0-8213-4625-3

Blumenstock, J., Cadamuro, G., & On, R. (2015). Predicting poverty and wealth from mobile phone metadata. Science, 350(6264), 1073–1076. https://doi.org/10.1126/science.aac4420

Cadamuro, G., Muhebwa, A., & Taneja, J. (2018). Assigning a Grade: Accurate Measurement of Road Quality Using Satellite Imagery.

Chand, T. R. K., Badarinath, K. V. S., Elvidge, C. D., & Tuttle, B. T. (2009). Spatial characterization of electrical power consumption patterns over India using temporal DMSP‐OLS night‐time satellite data. International Journal of Remote Sensing, 30(3), 647–661. https://doi.org/10.1080/01431160802345685

Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences, 108(21), 8589–8594. https://doi.org/10.1073/pnas.1017031108

Chen, Z., Yu, B., Hu, Y., Huang, C., Shi, K., & Wu, J. (2015). Estimating House Vacancy Rate in Metropolitan Areas Using NPP-VIIRS Nighttime Light Composite Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5), 2188–2197. https://doi.org/10.1109/JSTARS.2015.2418201

Chen, Z., Yu, B., Song, W., Liu, H., Wu, Q., Shi, K., & Wu, J. (2017). A New Approach for Detecting Urban Centers and Their Spatial Structure With Nighttime Light Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6305–6319. https://doi.org/10.1109/TGRS.2017.2725917

David J. Rogers, Thomas Emwanu, & Timothy P. Robinson. (2006). Poverty Mapping in Uganda: An Analysis Using Remotely Sensed and Other Environmental Data. Rogers2006PovertyMI.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026

Duque, J. C., Patino, J. E., Ruiz, L. A., & Pardo-Pascual, J. E. (2015). Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landscape and Urban Planning, 135, 11–21. https://doi.org/10.1016/j.landurbplan.2014.11.009

Ehrlich D., Schiavina M., Pesaresi M., & Kemper, T. (2018). Detecting spatial pattern of inequalities from remote sensing Towards mapping of deprived communities and poverty.

Elvidge, C. D., Baugh, K. E., Zhizhin, M., & Hsu, F.-C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights. Proceedings of the Asia-Pacific Advanced Network, 35(0), 62. https://doi.org/10.7125/APAN.35.7

Elvidge, C. D., Sutton, P. C., Ghosh, T., Tuttle, B. T., Baugh, K. E., Bhaduri, B., & Bright, E. (2009). A global poverty map derived from satellite data. Computers & Geosciences, 35(8), 1652–1660. https://doi.org/10.1016/j.cageo.2009.01.009

Fisher, J. R. B., Acosta, E. A., Dennedy-Frank, P. J., Kroeger, T., & Boucher, T. M. (2018). Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing in Ecology and Conservation, 4(2), 137–149. https://doi.org/10.1002/rse2.61

Foster, J. E. (1998). Absolute versus Relative Poverty. The American Economic Review, 88, 335–341.

Frediani, A. A. (2010). Sen’s Capability Approach as a framework to the practice of development. Development in Practice, 20(2), 173–187. https://doi.org/10.1080/09614520903564181

Gambo, J., Shafri, H. Z. M., & Yusuf, Y. A. (2022). An analysis of multidimensional poverty in Nigeria using statistical and geospatial modelling: A case study of Jigawa state. IOP Conference Series: Earth and Environmental Science, 1064(1), 012047. https://doi.org/10.1088/1755-1315/1064/1/012047

Gervasoni, L., Fenet, S., Perrier, R., & Sturm, P. (2018). Convolutional neural networks for disaggregated population mapping using open data. 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA), IEEE, , 594–603.

Ghosh, T., Anderson, S., Elvidge, C., & Sutton, P. (2013). Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being. Sustainability, 5(12), 4988–5019. https://doi.org/10.3390/su5124988

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., … Chen, J. (2013). Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 2607–2654. https://doi.org/10.1080/01431161.2012.748992

Grippa, T., Georganos, S., Zarougui, S., Bognounou, P., Diboulo, E., Forget, Y., Lennert, M., Vanhuysse, S., Mboga, N., & Wolff, E. (2018). Mapping Urban Land Use at Street Block Level Using OpenStreetMap, Remote Sensing Data, and Spatial Metrics. ISPRS International Journal of Geo-Information, 7(7), 246. https://doi.org/10.3390/ijgi7070246

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693

Head, A., Manguin, M., Tran, N., & Blumenstock, J. E. (2017). Can Human Development be Measured with Satellite Imagery? Proceedings of the Ninth International Conference on Information and Communication Technologies and Development, 1–11. https://doi.org/10.1145/3136560.3136576

Henderson, J. V., Storeygard, A., & Weil, D. N. (2012). Measuring Economic Growth from Outer Space. American Economic Review, 102(2), 994–1028. https://doi.org/10.1257/aer.102.2.994

Herold, M., Liu, X., & Clarke, K. C. (2003). Spatial Metrics and Image Texture for Mapping Urban Land Use. Photogrammetric Engineering & Remote Sensing, 69(9), 991–1001. https://doi.org/10.14358/PERS.69.9.991

Herold, M., Scepan, J., & Clarke, K. C. (2002). The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses. Environment and Planning A: Economy and Space, 34(8), 1443–1458. https://doi.org/10.1068/a3496

Hersh, J., Engstrom, R., & Mann, M. (2021). Open data for algorithms: mapping poverty in Belize using open satellite derived features and machine learning. Information Technology for Development, 27(2), 263–292. https://doi.org/10.1080/02681102.2020.1811945

Hofer, M., Sako, T., Martinez Jr., A., Addawe, M., Bulan, J., Durante, R. L., & Martillan, M. (2020). Applying Artificial Intelligence on Satellite Imagery to Compile Granular Poverty Statistics. https://doi.org/10.22617/WPS200432-2

Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sensing, 4(9), 2661–2693. https://doi.org/10.3390/rs4092661

Imran, M., Stein, A., & Zurita-Milla, R. (2014). Investigating rural poverty and marginality in Burkina Faso using remote sensing-based products. International Journal of Applied Earth Observation and Geoinformation, 26, 322–334. https://doi.org/10.1016/j.jag.2013.08.012

Jarry, R., Chaumont, M., Berti-Équille, L., & Subsol, G. (2021). Assessment of CNN-Based Methods for Poverty Estimation from Satellite Images (pp. 550–565). https://doi.org/10.1007/978-3-030-68787-8_40

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790–794. https://doi.org/10.1126/science.aaf7894

Jemmali, H. (2017). Mapping water poverty in Africa using the improved Multidimensional Index of Water Poverty. International Journal of Water Resources Development, 33(4), 649–666. https://doi.org/10.1080/07900627.2016.1219941

Jolliffe, D. M., Mahler, D. G., Lakner, C., Atamanov, A., & Tetteh Baah, S. Kofi. (2017). Assessing the Impact of the 2017 PPPs on the International Poverty Line and Global Poverty (WPS 9941). http://documents.worldbank.org/curated/en/353811645450974574/Assessing-the-Impactof-the-2017-PPPs-on-the-International-Poverty-Line-and-Global-Poverty

Klemens, B., Coppola, A., & Shron, M. (2015). Estimating Local Poverty Measures Using Satellite Images: A Pilot Application to Central America. The World Bank. https://doi.org/10.1596/1813-9450-7329

Kohli, D., Sliuzas, R., & Stein, A. (2016). Urban slum detection using texture and spatial metrics derived from satellite imagery. Journal of Spatial Science, 61(2), 405–426. https://doi.org/10.1080/14498596.2016.1138247

Kohli, D., Stein, A., Sliuzas, R., & Kerle, N. (2015). Identifying and Classifying Slum Areas Using Remote Sensing.

Kohli, D., Warwadekar, P., Kerle, N., Sliuzas, R., & Stein, A. (2013). Transferability of Object-Oriented Image Analysis Methods for Slum Identification. Remote Sensing, 5(9), 4209–4228. https://doi.org/10.3390/rs5094209

Lin, L., Di, L., Tang, J., Yu, E., Zhang, C., Rahman, Md., Shrestha, R., & Kang, L. (2019). Improvement and Validation of NASA/MODIS NRT Global Flood Mapping. Remote Sensing, 11(2), 205. https://doi.org/10.3390/rs11020205

Lin, L., Di, L., Yang, R., Zhang, C., Yu, E., Rahman, M. S., Sun, Z., & Tang, J. (2018). Using Machine Learning Approach to Evaluate the PM2.5 Concentrations in China from 1998 to 2016. Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–5.

Lin, L., Di, L., Zhang, C., Guo, L., & Di, Y. (2021). Remote Sensing of Urban Poverty and Gentrification. Remote Sensing, 13(20), 4022. https://doi.org/10.3390/rs13204022

Ma, T., Zhou, C., Pei, T., Haynie, S., & Fan, J. (2014). Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sensing Letters, 5(2), 165–174. https://doi.org/10.1080/2150704X.2014.890758

Mahabir, R., Croitoru, A., Crooks, A., Agouris, P., & Stefanidis, A. (2018). A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities. Urban Science, 2(1), 8. https://doi.org/10.3390/urbansci2010008

Marx, S., Phalkey, R., Aranda-Jan, C. B., Profe, J., Sauerborn, R., & Höfle, B. (2014). Geographic information analysis and web-based geoportals to explore malnutrition in Sub-Saharan Africa: a systematic review of approaches. BMC Public Health, 14(1), 1189. https://doi.org/10.1186/1471-2458-14-1189

Melchiorri, M., Florczyk, A., Freire, S., Schiavina, M., Pesaresi, M., & Kemper, T. (2018). Unveiling 25 Years of Planetary Urbanization with Remote Sensing: Perspectives from the Global Human Settlement Layer. Remote Sensing, 10(5), 768. https://doi.org/10.3390/rs10050768

Noor, A. M., Alegana, V. A., Gething, P. W., Tatem, A. J., & Snow, R. W. (2008). Using remotely sensed night-time light as a proxy for poverty in Africa. Population Health Metrics, 6(1), 5. https://doi.org/10.1186/1478-7954-6-5

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584

Pesaresi, M., Syrris, V., & Julea, A. (2016). A New Method for Earth Observation Data Analytics Based on Symbolic Machine Learning. Remote Sensing, 8(5), 399. https://doi.org/10.3390/rs8050399

Piaggesi, S., Gauvin, L., Tizzoni, M., Cattuto, C., Adler, N., Verhulst, S. G., Young, A., Price, R., Ferres, L., & Panisson, A. (2019). Predicting City Poverty Using Satellite Imagery. . Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 90–96.

Priambodo, A. (2021). THE IMPACT OF UNEMPLOYMENT AND POVERTY ON ECONOMIC GROWTH AND THE HUMAN DEVELOPMENT INDEX (HDI). Perwira International Journal of Economics & Business, 1(1), 29–36. https://doi.org/10.54199/pijeb.v1i1.43

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Sheehan, E., Meng, C., Tan, M., Uzkent, B., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2019). Predicting economic development using geolocated wikipedia articles. , 2698–2706. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2698–2706.

Shi, K., Yang, Q., Fang, G., Yu, B., Chen, Z., Yang, C., & Wu, J. (2019). Evaluating spatiotemporal patterns of urban electricity consumption within different spatial boundaries: A case study of Chongqing, China. Energy, 167, 641–653. https://doi.org/10.1016/j.energy.2018.11.022

Sohnesen, T. P., Fisker, P., & Malmgren‐Hansen, D. (2022). Using Satellite Data to Guide Urban Poverty Reduction. Review of Income and Wealth, 68(S2). https://doi.org/10.1111/roiw.12552

Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J., Bjelland, J., Engø-Monsen, K., de Montjoye, Y.-A., Iqbal, A. M., Hadiuzzaman, K. N., Lu, X., Wetter, E., Tatem, A. J., & Bengtsson, L. (2017). Mapping poverty using mobile phone and satellite data. Journal of The Royal Society Interface, 14(127), 20160690. https://doi.org/10.1098/rsif.2016.0690

Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLOS ONE, 10(2), e0107042. https://doi.org/10.1371/journal.pone.0107042

Stoler, J., Daniels, D., Weeks, J. R., Stow, D. A., Coulter, L. L., & Finch, B. K. (2012). Assessing the Utility of Satellite Imagery with Differing Spatial Resolutions for Deriving Proxy Measures of Slum Presence in Accra, Ghana. GIScience & Remote Sensing, 49(1), 31–52. https://doi.org/10.2747/1548-1603.49.1.31

Stow, D. A., Lippitt, C. D., & Weeks, J. R. (2010). Geographic Object-based Delineation of Neighborhoods of Accra, Ghana Using QuickBird Satellite Imagery. Photogrammetric Engineering & Remote Sensing, 76(8), 907–914. https://doi.org/10.14358/PERS.76.8.907

Stow, D., Lopez, A., Lippitt, C., Hinton, S., & Weeks, J. (2007). Object‐based classification of residential land use within Accra, Ghana based on QuickBird satellite data. International Journal of Remote Sensing, 28(22), 5167–5173. https://doi.org/10.1080/01431160701604703

Tingzon, I., Orden, A., Go, K. T., Sy, S., Sekara, V., Weber, I., Fatehkia, M., García-Herranz, M., & Kim, D. (2019). MAPPING POVERTY IN THE PHILIPPINES USING MACHINE LEARNING, SATELLITE IMAGERY, AND CROWD-SOURCED GEOSPATIAL INFORMATION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W19, 425–431. https://doi.org/10.5194/isprs-archives-XLII-4-W19-425-2019

United Nations General Assembly. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development.

van Beijma, S., Comber, A., & Lamb, A. (2014). Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149, 118–129. https://doi.org/10.1016/j.rse.2014.04.010

Varshney, K. R., Chen, G. H., Abelson, B., Nowocin, K., Sakhrani, V., Xu, L., & Spatocco, B. L. (2015). Targeting Villages for Rural Development Using Satellite Image Analysis. Big Data, 3(1), 41–53. https://doi.org/10.1089/big.2014.0061

Victor, B., Blevins, M., Green, A. F., Ndatimana, E., González-Calvo, L., Fischer, E. F., Vergara, A. E., Vermund, S. H., Olupona, O., & Moon, T. D. (2014). Multidimensional Poverty in Rural Mozambique: A New Metric for Evaluating Public Health Interventions. PLoS ONE, 9(9), e108654. https://doi.org/10.1371/journal.pone.0108654

Weeks, J. R., Hill, A., Stow, D., Getis, A., & Fugate, D. (2007). Can we spot a neighborhood from the air? Defining neighborhood structure in Accra, Ghana. GeoJournal, 69(1–2), 9–22. https://doi.org/10.1007/s10708-007-9098-4

World Bank. (2018). Poverty and Shared Prosperity 2018: Piecing Together the Poverty Puzzle. https://www.worldbank.org/en/publication/poverty-and-shared-prosperity-2018

World Bank. (2020). Poverty and Shared Prosperity 2020: Reversals of Fortune. . https://openknowledge.worldbank.org/handle/10986/34496

World Bank. (2022). Poverty and Shared Prosperity 2022: Correcting Course. https://www.worldbank.org/en/publication/poverty-and-shared-prosperity

Xie, M., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2016). Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). https://doi.org/10.1609/aaai.v30i1.9906

Yao, Y., Liu, X., Li, X., Zhang, J., Liang, Z., Mai, K., & Zhang, Y. (2017). Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. International Journal of Geographical Information Science, 1–25. https://doi.org/10.1080/13658816.2017.1290252

Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., Ermon, S., & Burke, M. (2020). Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications, 11(1), 2583. https://doi.org/10.1038/s41467-020-16185-w

Yu, B., Shi, K., Hu, Y., Huang, C., Chen, Z., & Wu, J. (2015). Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 1217–1229. https://doi.org/10.1109/JSTARS.2015.2399416

Yu, B., Tang, M., Wu, Q., Yang, C., Deng, S., Shi, K., Peng, C., Wu, J., & Chen, Z. (2018). Urban Built-Up Area Extraction From Log- Transformed NPP-VIIRS Nighttime Light Composite Data. IEEE Geoscience and Remote Sensing Letters, 15(8), 1279–1283. https://doi.org/10.1109/LGRS.2018.2830797

Zhang, C., Yang, Z., Di, L., Lin, L., & Hao, P. (2020). REFINEMENT OF CROPLAND DATA LAYER USING MACHINE LEARNING. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W11, 161–164. https://doi.org/10.5194/isprs-archives-XLII-3-W11-161-2020

Zhao, N., Liu, Y., Cao, G., Samson, E. L., & Zhang, J. (2017). Forecasting China’s GDP at the pixel level using nighttime lights time series and population images. GIScience & Remote Sensing, 54(3), 407–425. https://doi.org/10.1080/15481603.2016.1276705

Zhao, X., Yu, B., Liu, Y., Chen, Z., Li, Q., Wang, C., & Wu, J. (2019). Estimation of Poverty Using Random Forest Regression with Multi-Source Data: A Case Study in Bangladesh. Remote Sensing, 11(4), 375. https://doi.org/10.3390/rs11040375

Zhou, Y., Ma, T., Zhou, C., & Xu, T. (2015). Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China. Remote Sensing, 7(2), 1242–1262. https://doi.org/10.3390/rs70201242

Downloads

Published

29-02-2024

How to Cite

Nzelibe, I. U. (2024). SATELLITE AND ARTIFICIAL INTELLIGENCE IN MAPPING MULTIDIMENSIONAL POVERTY IN AFRICA. African Journal on Land Policy and Geospatial Sciences, 7(1), 325–347. https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v7i1.44087

Issue

Section

Review papers

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.