To evaluate future wetland degradation at wami ruvu river basin from 2020 to 2050 using remote sensing imagery and hybrid ca- markov model

Authors

  • Edina Pius Kimario Sokoine University of Agriculture
  • Boniface Mbilinyi Sokoine University of Agriculture
  • Proches Hieronimo Sokoine University of Agriculture

DOI:

https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v7i1.42616

Keywords:

Land Change Modeler, Markov chain, Wetland, Cellular Automata (CA), Remote Sensing

Abstract

Context and background:
In current industrialized world, extremely increase of urbanization, Agriculture land expansion and climate change have led to increase of degradation of wetland in many basins and coastal area, which result to the malfunction of its ecosystem services. However, there are few studies have been conducted to analyze how the historical degradation of wetland will continue in the future especially in most of the developing countries.
Goal and objectives:
The overall objective of the study intents to provide an integrated method which includes GIS, remote sensing and CA-Markov Chain modelling to analyse the influence of LULC dynamic into wetland degradation. Specifically, is to use historical land use/cover maps of 2000,2010 and 2020 to develop land use simulation model to predict the spatial degradation of wetland for three decades.
Methodology:
In this study will use historical land use/cover maps of 2000,2010 and 2020 to develop land use simulation model to predict the spatial degradation of wetland in Wami-Ruvu river basin for coming 30 years (2020-2050) under different scenarios using land change modeler (LCM) in Idris-TerrSet. Future land use/cover map of the study area was developed using Markov chain and artificial neural network (ANN) Analysis in LCM modeler.
Results:
The study found of about 1209.0753Km2 (2%), 949Km2 (1.4%), 521.33Km2 (0.78%) and 213 (0.32%) of wetland was decreasing, which was equal to 1339999, 1055066, 578584and 237199 for the year 2000, 2010, 2020 and 2050 for the individual pixel values respectively, which made a half of the total simulated wetland to have been lost that is 50% of the land in the study region.

Author Biographies

Edina Pius Kimario, Sokoine University of Agriculture

Department of Agriculture Engineering

Boniface Mbilinyi, Sokoine University of Agriculture

Department of Civil and Water Resources Engineering

Proches Hieronimo, Sokoine University of Agriculture

Sokoine University of Agriculture

References

Abitibi-témiscamingue, A. De, & Molowny-horas, R. (2020). Modelagem das mudanças espaço-temporais de áreas úmidas : estudo de caso da Região. 119–134.

Akumu, C. E., & Henry, J. (2018). Digital Scholarship @ Tennessee State University Inland wetlands mapping and vulnerability assessment using an integrated geographic information system and remote sensing techniques. 4(4), 387–400. https://doi.org/10.22034/gjesm.2018.04.001

Alo, C. A., & Pontius, R. G. (2008). Identifying systematic land-cover transitions using remote sensing and GIS: The fate of forests inside and outside protected areas of Southwestern Ghana. Environment and Planning B: Planning and Design, 35(2), 280–295. https://doi.org/10.1068/b32091

Anand, V., & Oinam, B. (2020). Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sensing Letters, 11(3), 225–234. https://doi.org/10.1080/2150704X.2019.1704304

Ansari, A., & Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands – A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research, 7(1), 64–70. https://doi.org/10.1016/j.iswcr.2018.10.001

Arsanjania, J. J., & Vaz, E. (2015). An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. International Journal of Applied Earth Observation and Geoinformation, 35(PB), 329–337. https://doi.org/10.1016/j.jag.2014.09.009

Assefa, W. W., Eneyew, B. G., & Wondie, A. (2021). The impacts of land-use and land-cover change on wetland ecosystem service values in peri-urban and urban area of Bahir Dar City, Upper Blue Nile Basin, Northwestern Ethiopia. Ecological Processes, 10(1). https://doi.org/10.1186/s13717-021-00310-8

Bartesaghi Koc, C., Osmond, P., & Peters, A. (2018). Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Solar Energy, 166(February), 486–508. https://doi.org/10.1016/j.solener.2018.03.008

Bell, G., & Fortier-Dubois, É. (2017). Trophic dynamics of a simple model ecosystem. Proceedings of the Royal Society B: Biological Sciences, 284(1862). https://doi.org/10.1098/rspb.2017.1463

Beuel, S., Alvarez, M., Amler, E., Behn, K., Kotze, D., Kreye, C., Leemhuis, C., Wagner, K., Willy, D. K., Ziegler, S., & Becker, M. (2016). A rapid assessment of anthropogenic disturbances in East African wetlands. Ecological Indicators, 67, 684–692. https://doi.org/10.1016/j.ecolind.2016.03.034

Bounini, F., Gingras, D., Pollart, H., & Gruyer, D. (2017). Modified artificial potential field method for online path planning applications. IEEE Intelligent Vehicles Symposium, Proceedings, 180–185. https://doi.org/10.1109/IVS.2017.7995717

Chang-Martínez, L. A., & Mas, J. F. (2021). Simulation of Land Use/Cover Change in the Kingdom of Calakmul During the Late Classic Period (AD 600–900). Environmental Archaeology, 26(6), 526–542. https://doi.org/10.1080/14614103.2020.1803013

Chang-Martínez, L. A., Mas, J. F., Valle, N. T., Torres, P. S. U., & Folan, W. J. (2015). Modeling historical land cover and land use: A review from contemporary modeling. ISPRS International Journal of Geo-Information, 4(4), 1791–1812. https://doi.org/10.3390/ijgi4041791

Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934–941. https://doi.org/10.1071/MF14173

Dias, D., & Cunha, J. P. S. (2018). Wearable health devices—vital sign monitoring, systems and technologies. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082414

Ding, N., & Siqi, C. (2016). Land Change Modeler Application : Summer Internship with Clark Labs. 86.

Fang, C., Wang, S., & Li, G. (2015). Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Applied Energy, 158, 519–531. https://doi.org/10.1016/j.apenergy.2015.08.095

Foody, G. M. (2004). Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70(5), 627–633. https://doi.org/10.14358/PERS.70.5.627

Foody, G. M., Ghoneim, E. M., & Arnell, N. W. (2004). Predicting locations sensitive to flash flooding in an arid environment. Journal of Hydrology, 292(1–4), 48–58. https://doi.org/10.1016/j.jhydrol.2003.12.045

Franklin, S. E. (2018). Pixel-and object-based multispectral classification of forest tree species from small unmanned aerial vehicles. Journal of Unmanned Vehicle Systems, 6(4), 195–211. https://doi.org/10.1139/juvs-2017-0022

Franklin, S. E., & Ahmed, O. S. (2018). Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. International Journal of Remote Sensing, 39(15–16), 5236–5245.

https://doi.org/10.1080/01431161.2017.1363442

Gardner, R. C., Barchiesi, S., Beltrame, C., Finlayson, C. M., Galewski, T., Harrison, I., Paganini, M., Perennou, C., Pritchard, D., Rosenqvist, A., & Walpole, M. (2015). State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. SSRN Electronic Journal, June. https://doi.org/10.2139/ssrn.2589447

Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors (Switzerland), 17(4), 1–36. https://doi.org/10.3390/s17040777

H, J. G. K. (2001). Minireview Restoration and management of mangrove systems - from the East African region. South African Journal of Botany, 67(3), 383–389. https://doi.org/10.1016/S0254-6299(15)31153-4

Hu, T. (2020). Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling. July 2019, 65–80. https://doi.org/10.1002/ldr.3429

Hyandye, C., & Martz, L. W. (2017). A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. International Journal of Remote Sensing, 38(1), 64–81. https://doi.org/10.1080/01431161.2016.1259675

Islam, H., Abbasi, H., Karam, A., Chughtai, A. H., & Jiskani, M. A. (2021). Geospatial analysis of wetlands based on land use / land cover dynamics using remote sensing and GIS in. 104(2), 1–22. https://doi.org/10.1177/00368504211026143

Jackson, A. (2006). Foresight. In Drugs and the Future: Brain Science, Addiction and Society (pp. 7–10). https://doi.org/10.1016/B978-012370624-9/50005-0

Jamal, S., & Ahmad, W. S. (2020). Assessing land use land cover dynamics of wetland ecosystems using Landsat satellite data. SN Applied Sciences, 2(11), 1–24. https://doi.org/10.1007/s42452-020-03685-z

John Mwita, E. (2016). Monitoring Restoration of the Eastern Usangu Wetland by Assessment of Land Use and Cover Changes. Advances in Remote Sensing, 05(02), 145–156.

https://doi.org/10.4236/ars.2016.52012

Jokar Arsanjani, J., Helbich, M., Bakillah, M., & Loos, L. (2015). The emergence and evolution of OpenStreetMap: a cellular automata approach. International Journal of Digital Earth, 8(1), 76–90. https://doi.org/10.1080/17538947.2013.847125

Jokar Arsanjani, J., Mooney, P., Zipf, A., & Schauss, A. (2015). Quality assessment of the contributed land use information from OpenStreetMap versus authoritative datasets. Lecture Notes in Geoinformation and Cartography, 0(9783319142791), 37–58. https://doi.org/10.1007/978-3-319-14280-7_3

Jokar Arsanjani, J., Zipf, A., Mooney, P., & Helbich, M. (2015). An Introduction to OpenStreetMap in Geographic Information Science: Experiences, Research, and Applications. Lecture Notes in Geoinformation and Cartography, 0(9783319142791), 1–15. https://doi.org/10.1007/978-3-319-14280-7_1

Jokar Arsanjani, T., Javidan, R., Nazemosadat, M. J., Arsanjani, J. J., & Vaz, E. (2015). Spatiotemporal monitoring of Bakhtegan Lake’s areal fluctuations and an exploration of its future status by applying a cellular automata model. Computers and Geosciences, 78, 37–43. https://doi.org/10.1016/j.cageo.2015.02.004

Keba, H. T. (2013). The impact of changes in land-use patterns and rainfall variability on range condition and pastoral livelihoods in the Borana rangelands of southern Oromia, Ethiopia. June. https://repository.up.ac.za/handle/2263/32981

Keshta, A. E., Riter, J. C. A., Shaltout, K. H., Baldwin, A. H., Kearney, M., El-din, A. S., & Eid, E. M. (2022). Loss of Coastal Wetlands in Lake Burullus , Egypt : A GIS and Remote-Sensing Study. 1–16.

Khawaldah, H. A. (2016). A Prediction of Future Land Use/Land Cover in Amman Area Using GIS-Based Markov Model and Remote Sensing. Journal of Geographic Information System, 08(03), 412–427. https://doi.org/10.4236/jgis.2016.83035

Kogo, B. K., Kumar, L., & Koech, R. (2021). Analysis of spatio-temporal dynamics of land use and cover changes in Western Kenya. Geocarto International, 36(4), 376–391. https://doi.org/10.1080/10106049.2019.1608594

Lefebvre, G., Willm, L., Campagna, J., & Redmond, L. (2019). Introducing WIW for Detecting the Presence of Water in Wetlands with Landsat and Sentinel Satellites. 10–14.

Liang, L., & Gong, P. (2020). Urban and air pollution: a multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-74524-9

LIBERATH, G., & A. (2017). Analysis of Drivers and Economic Consequences of Wetland. 1–97.

Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88(4), 1020–1031. https://doi.org/10.1016/j.apenergy.2010.09.029

Lu, C. Y., Ren, C. Y., Wang, Z. M., Zhang, B., Man, W. D., Yu, H., Gao, Y. Bin, & Liu, M. Y. (2019). Monitoring and assessment of wetland loss and fragmentation in the cross-boundary protected area: A case study of Wusuli River Basin. Remote Sensing, 11(21). https://doi.org/10.3390/rs11212581

Mao, D., Tian, Y., Wang, Z., Jia, M., Du, J., & Song, C. (2021). Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. Journal of Environmental Management, 280(August), 111670. https://doi.org/10.1016/j.jenvman.2020.111670

Mas, J., Kolb, M., Paegelow, M., Camacho, M. T., Houet, T., Mas, J., Kolb, M., Paegelow, M., Teresa, M., Olmedo, C., & Houet, T. (2014). Inductive pattern-based land use / cover change models : A comparison of four software packages. Elsevier, 2014, pp.94-111. 10.1016/j.envsoft.2013.09.010 . hal-01187569 HAL. Environmental Modelling & Software.

Mkanda, F. X. (2002). Contribution by farmers ’ survival strategies to soil erosion in the Linthipe River Catchment : implications for biodiversity conservation in Lake Malawi / Nyasa.

Mombo, F., Speelman, S., Huylenbroeck, G. Van, & Hella, J. (2011). Ratification of the Ramsar convention and sustainable wetlands management : Situation analysis of the Kilombero Valley wetlands in Tanzania. February 2016.

Mugo, R., Waswa, R., Nyaga, J. W., Ndubi, A., Adams, E. C., & Flores-Anderson, A. I. (2020). Quantifying land use land cover changes in the lake victoria basin using satellite remote sensing: The trends and drivers between 1985 and 2014. Remote Sensing, 12(17), 1–17. https://doi.org/10.3390/rs12172829

Mwakaje, A. G. (2009). Wetlands, livelihoods and sustainability in Tanzania. Africafile:///C:/Users/User/Downloads/Local_Knowledge_on_the_Influence_of_Land_UseCover_.Pdfn Journal of Ecology, 47(SUPPL. 1), 179–184. https://doi.org/10.1111/j.1365-2028.2008.01067.x

Nagabhatla, N., Hung, N. T., Tuyen, L. T., Cam, V. T. N., Dhanraj, J., Thien, N. T., & Swierczek, F. W. (2019). Ecosystem-based approach for planning research and capacity development for integrated coastal zone management in Southeast Asia. APN Science Bulletin, 9(1), 3–9. https://doi.org/10.30852/sb.2019.537

Nagabhatla, N., Max Finlayson, C., & Sellamuttu, S. S. (2012). Assessment and change analyses (1987-2002) for tropical wetland ecosystem using earth observation and socioeconomic data. European Journal of Remote Sensing, 45(1), 215–232.

https://doi.org/10.5721/EuJRS20124520

Ngondo, J., Mango, J., Liu, R., Nobert, J., Dubi, A., & Cheng, H. (2021). Land-use and land-cover (Lulc) change detection and the implications for coastal water resource management in the wami–ruvu basin, tanzania. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084092

Nhamo, G. (2017). New Global Sustainable Development Agenda: A Focus on Africa. Sustainable Development, 25(3), 227–241. https://doi.org/10.1002/sd.1648

Nhamo, L., Magidi, J., & Dickens, C. (2017). Determining wetland spatial extent and seasonal variations of the inundated area using multispectral remote sensing. 43(4), 543–552.

Ntongani, W. A., Munishi, P. K. T., More, S. R., & Kashaigili, J. J. (2014). Local Knowledge on the Influence of Land Use/Cover Changes and Conservation Threats on Avian Community in the Kilombero Wetlands, Tanzania. Open Journal of Ecology, 04(12), 723–731. https://doi.org/10.4236/oje.2014.412062

Pontius, R. G., Boersma, W., Castella, J. C., Clarke, K., Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C. D., McConnell, W., Mohd Sood, A., Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T. N., Veldkamp, A. T., & Verburg, P. H. (2008). Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42(1), 11–37. https://doi.org/10.1007/s00168-007-0138-2

Pontius, R. G., Cornell, J. D., & Hall, C. A. S. (2001). Modeling the spatial pattern of land-use change with GEOMOD2 : application and validation for Costa Rica. 85, 191–203.

Razin, E., & Maharjan, G. R. (2019). Geography of Governance : Dynamics for Local Development Geography of Governance : Dynamics for Local Development Geography of Governance : Dynamics for Local Development (Issue April).

Roose, M. (2013). GIS ASSESSING TRADITIONAL AND MODERN AGRICULTURAL LAND USE / LAND COVER CHANGE A case study 1959-2005: Rekijoki , Somero, SW-Finland. 95.

Shen, G., Yang, X., Jin, Y., Xu, B., & Zhou, Q. (2019).

Remotfile:///E:/AQUILA ACTIVITIES/Edina/DOC/New Global Sustainable Development Agenda- A Focus on Africa.pdfe sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecological Indicators, 104(May 2018), 48–58. https://doi.org/10.1016/j.ecolind.2019.04.063

Singh, S., Bhardwaj, A., & Verma, V. K. (2020). Remote sensing and GIS based analysis of temporal land use / land cover and water quality changes in Harike wetland ecosystem , Punjab , India. Journal of Environmental Management, 262(March), 110355. https://doi.org/10.1016/j.jenvman.2020.110355

Tang, L. (2017). Sentinel-1 SLC Processing: Summer Internship with Clark Labs. http://www.osti.gov/servlets/purl/1398943/%0Apapers3://publication/doi/10.2172/1398943

Thamaga, K. H., Dube, T., & Shoko, C. (2022). Evaluating the impact of land use and land cover change on unprotected wetland ecosystems in the arid-tropical areas of South Africa using the Landsat dataset and support vector machine. Geocarto International, 0(0), 1–22. https://doi.org/10.1080/10106049.2022.2034986

Thomas, M., & Babiso, B. (2020). Extrapolation of Land Use Land Cover Changes in Menisa Watershed Using GIS based Markov Chain Analysis. IOSR Journal of Environmental Science, 14(8), 8–15. https://doi.org/10.9790/2402-1408030815

Tiné, M., & Molowny-horas, R. (2019). Complexos Theoretical Foundations of Modeling in Complex Systems. 111–120.

Tiné, M., Perez, L., & Molowny-Horas, R. (2019). Hybrid spatiotemporal simulation of future changes in open wetlands: A study of the Abitibi-Témiscamingue region, Québec, Canada. International Journal of Applied Earth Observation and Geoinformation, 74(September 2018), 302–313. https://doi.org/10.1016/j.jag.2018.10.001

Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J. J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I. P., Davids, C., Herban, S., & McCabe, M. F. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12(6). https://doi.org/10.3390/rs12061001

Town, M. M. (n.d.). REMOTE SENSING APPROACH IN WETLAND AND LAND DEGRADATION ASSESSMENT : A SCENARIO OF. 1959, 247–256.

Twisa, S., & Buchroithner, M. F. (2019). Land-use and land-cover (LULC) change detection in Wami river basin, Tanzania. Land, 8(9). https://doi.org/10.3390/land8090136

Twumasi, Y. A., & Merem, E. C. (2006). GIS and Remote Sensing Applications in the Assessment of Change within a Coastal Environment in the Niger Delta Region of Nigeria. 3(1), 98–106.

Verschuren, D., Johnson, T. C., Kling, H. J., Edgington, D. N., Leavitt, P. R., Brown, E. T., Talbot, M. R., & Hecky, R. E. (2002). History and timing of human impact on Lake Victoria , East Africa. September 2001, 289–294. https://doi.org/10.1098/rspb.2001.1850

Wijanarto, A. B. (2006). Application of Markov Change Detection Technique for Detecting Landsat Etm Derived. Jurnal Ilmiah Geomatika, 12(1), 11–21.

Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection. Sensors (Switzerland), 18(10), 1–17. https://doi.org/10.3390/s18103337

Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J. (2010). Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37(13), 1–5. https://doi.org/10.1029/2010GL043584

Zhang, S., Sulankivi, K., Kiviniemi, M., Romo, I., Eastman, C. M., & Teizer, J. (2015). BIM-based fall hazard identification and prevention in construction safety planning. Safety Science, 72, 31–45. https://doi.org/10.1016/j.ssci.2014.08.001

Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455–472. https://doi.org/10.1007/s13593-013-0194-1

Downloads

Published

29-02-2024

How to Cite

Kimario, E. P., Mbilinyi, B., & Hieronimo, P. (2024). To evaluate future wetland degradation at wami ruvu river basin from 2020 to 2050 using remote sensing imagery and hybrid ca- markov model. African Journal on Land Policy and Geospatial Sciences, 7(1), 15–38. https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v7i1.42616

Issue

Section

Land Policy and Regulatory Framework

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.