Urban topo climatic factors effects on heating Islands based on high-resolution Digital Surface Models
DOI:
https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v4i1.22447Keywords:
Urban heating Island, Dinual Anisotropic Heating, Sky View Factor, Digital Surface ModelsAbstract
Urban surface morphology is an important key factor in determining the temporal variation of thermal anisotropy. This study uses drones based high-resolution Digital Surface Models (DSM) to explore the impact of morphological urban variability expressed by terrain factors such as diurnal anisotropy patterns, sky view factor, solar radiation and solar duration effects on the urban heating island. The goal of this study is to build a topo-climatologic map from the terrain factors and determine its effects on the Urban Heating Islands. a test area of 2 square km was selected, including open grasslands, forests, and built-up areas. Itinerant measurements are made using portable sensors to measure temperature and wind direction in the study area. the measurement points are chosen according to the result of the topographic map and the topo climatologic map. the measures taken allowed us to study the temperature of the region during the day and at night and to detect the urban heat island of the region.
References
Al-Sudani, A., Hussein, H. & Sharples, S. (2017). Sky View Factor Calculation A computational-geometrical approach. SPACE SYNTAX AND ONTOLOGIES - Volume 2 - eCAADe 35-673.
Bernard, J.; Bocher, E.; Petit, G. & Palominos, S. (2018) Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools. Climate, 6, 60.
Böhner, J., Antonić O. (2009): Land-surface parameters specific to topo-climatology. Developments in Soil Science, 33: 195–226.
Bridier, S., (2017). Analyse morphologique d’une ville méditerranéenne à partir des bases de données urbaines (BDU) et des outils SIG pour préparer la cartographie et la mesure des températures en période d’îlot de chaleur urbain (ICU), Variabilité, changement climatique et conséquences en Méditerranée LPED 3, 123-137.
Cantat, O. (2004). L’ilot de chaleur urbain parisien selon les types de temps, Norois, n° 191, 2, 75-105.
Carrega, P. (1994). Topo climatologie et habitat, Revue d’Analyse Spatiale Quantitative et Appliquée, 35 et 36,408
Charabi, Y. (2001). L’ilot de chaleur urbain de la métropole lilloise mesures et spatialisation. Thèse de doctorat, Université de Lille 1, 247 pages.
Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U. & He, Z. (2012). Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in a high-rise, high-density urban areas of Hong Kong: a GIS-based simulation approach. Int. J. Climatol. 320 (1), 121–136. ISSN 08998418. Jan. https://doi.org/10.1002/joc.2243 URL. http://doi.wiley.com/10.1002/joc.2243.
Dahech, S., Beltrando, G., Bigot, S. (2005), Utilisation des données NOAA-AVHRR dans l’étude de la brise thermique et de l’Ilot de chaleur à Sfax (sud-est tunisien), Cybergéo, n° 317, pp.19
De Morais, M.V.B., De Freitas, E.D., Marciotto, E.R., Guerrero, V.V.U., Martins, L.D. & Martins, J.A. (2018). Implementation of observed sky-view factor in a mesoscale model for sensitivity studies of the urban meteorology. Sustainability 100 (7), 2183. 0. ISSN 20711050. jun. https://doi.org/10.3390/su10072183. http://www.mdpi.com/2071-1050/10/7/2183.
De Wolff, R. (2008). Developing an environmental fog potential map using a GIS. In: Technical Report July, KNMI, De Bilt.
Dirksen, M., Ronda, R.J., Theeuwes, N. & Pagani, G. (2019). Sky view factor calculations and its application in urban heat island studies. Urban Climate. 30. 10.1016/j.uclim.2019.100498.
Gál, T., Lindberg, F., Unger, J. (2009). Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate.Theor. Appl. Climatol. 950 (1–2), 111–123.0.ISSN14344483.jan.https://doi.org/10.1007/s00704-007-0362-9. http://link.springer.com/10.1007/s00704007-0362-9
Hengl T., Reuter H.I. (2009): Geomorphometry – Concepts, Software, Applications. Amsterdam, Oxford, Elsevier: 772
Kastendeuch, P.P. (2013). A method to estimate sky view factors from digital elevation models. Int. J. Climatol.330(6),1574–1578.0.ISSN08998418.may.https://doi.org/10.1002/joc.3523. http://doi.wiley.com/10.1002/joc.3523.
Lukovic, Jelena & Bajat, Branislav & Kilibarda, Milan & Filipovic, Dejan. (2015). High resolution grid of potential incoming solar radiation for Serbia. Thermal Science. 19. 134-134. 10.2298/TSCI150430134L.
Middel, A., Lukasczyk, J., & Maciejewski, R. (2017). Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing—A Case Study in Phoenix, Arizona. 2017, 2(1), 12. https://doi.org/10.17645/up.v2i1.855.
Sakr, S., Bridier, S. (2017). Système de brises thermiques et distribution de la pollution atmosphérique à Beyrouth, XXXème colloque de l’association Internationale de Climatologie, Sfax 03-06 juillet 2017.
Theeuwes, N.E., Steeneveld, G.J., Ronda, R.J. & Holtslag, A.A. (2017). A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. Int. J. Climatol. 370 (1), 443–454. jan 2017. ISSN 10970088. https://doi.org/10.1002/joc.4717 URL. http://doi.wiley.com/10.1002/joc.4717.
Zakšek, K.; Oštir, K.; Kokalj, Ž (2011). Sky-View Factor as a Relief Visualization Technique. Remote Sens.,3, 398-415.
Zeng, L., Lu, J., Li, W., Li, Y. (2018). A fast approach for large-scale sky view factor estimation using street view images. Build. Environ. 135, 74–84. may 2018. ISSN 03601323. https://doi.org/10.1016/j.buildenv.2018.03.009 URL. https://www-sciencedirect-com.ezproxy.library.wur.nl/science/article/pii/ S0360132318301380.

